

J/ψ production measurements in pp and PbPb collisions in the ALICE experiment at the LHC

International Europhysics Conference on High Energy Physics Grenoble, Rhône-Alpes France July 21-27 2011

Motivations for J/ ψ studies

The ALICE experiment and its performance in detecting quarkonia

Results in pp collisions at 7 TeV and 2.76 TeV

Results in PbPb collisions at 2.76 TeV

Conclusions

colour-octet 'S₀ + colour-octet ³S₁ LO colour-singlet

colour-singlet frag.

 $BR(J/\psi \rightarrow \mu^{+}\mu^{-}) d\sigma(p\bar{p} \rightarrow J/\psi + X)/dp_{\tau} (nb/GeV)$

√s =1.8 TeV; |η| < 0.6

Need to understand production mechanism. Several models:

- CEM: phenomenological;
- CSM LO: bad x-sect. reproduction (ruled out in the '90s);
- **COM:** good x-sect. reprod. for all quarkonia, bad polarization prediction;
- CSM NLO: x-sect. better than LO, better polar. prediction

10

10

Motivations for J/ ψ in pp & HI collisions

Quarkonium suppression proposed as a probe of deconfinement. Observed suppression in central collisions at SPS and RICH (above cold nuclear matter effects)

Many issues as:

- Suppression at PHENIX not larger than at SPS (regeneration? Interesting to study at higher energies)
- PHENIX finds larger suppression at forward rapidity \rightarrow interesting to study the forward region at LHC

Energy Density

ALICE detector and performance

The ALICE experiment

Livio Bianchi EPS HEP 2011 Grenoble - 21/07/11

____ 17

6

ALICE studies J/ψ production down to $p_T=0$ both at mid-rapidity (**|y|<0.9**) in the di-electron channel and at forward rapidity (**2.5<y<4**) in the dimuon channel

Inner Tracking System (ITS), 6 layers: •2 pixel layers (SPD) •2 drift layers (SDD) •2 strip layers (SSD) Time Projection Chamber (TPC): main tracking detector, used for PID via specific energy loss

V0: scintillator arrays at forward and backward rapidities – used for MB trigger (with SPD) and for centrality determination Muon Spectrometer: •Front absorber •5 tracking stations •Dipole magnet •Iron wall •2 trigger stations

$J/\psi \rightarrow \mu^+\mu^-$ and $\rightarrow e^+e^-$ in ALICE (pp)

ALICE took data in pp runs at 7 (arXiv:1105.0380) and 2.76 TeV. Integrated luminosity corresponding to the results that will be shown:

	J/ ψ→μ⁺μ⁻	J / ψ→e⁺e⁻
√s = 7 TeV	15.6 nb ⁻¹	3.9 nb ⁻¹
√s = 2.76 TeV	20.2 nb ⁻¹	1.1 nb ⁻¹

2 peculiarities of ALICE:

- 1. In the Forward spectrometer the acceptance is slowly dependent on p_T and, as in the e⁺e⁻ channel, goes down to $p_T=0$
- 2. In central barrel PID performed with the TPC (in the future also TRD and EMCAL): $\pm 3\sigma$ inclusion cut for electrons, $\pm 3.5\sigma(3\sigma)$ exclusion cuts for pions (protons).

Events / (50 MeV/c²)

10³

10²

10

12

2.5

3

3.5

4

Dimuon invariant mass (GeV/c²)

4.5

$J/\psi \rightarrow \mu^{+}\mu^{-}$ and $\rightarrow e^{+}e^{-}$ in ALICE (PbPb)

2.5

3

3.5

4

Dimuon invariant mass (GeV/c²)

4.5

Data were taken at 2.76 TeV in both channels - total luminosity of 2.7 $\mu b^{\text{-1}}$

2

To estimate centrality: V0 amplitude fitted with glauber model

Four centrality classes chosen for muons: [0,10]% [10,20]% [20,40]% [40,80]%

Only two for electrons: [0,40]% [40,80]%

Livio Bianchi

EPS HEP 2011

8

Results: pp collisions at 7 TeV & 2.76 TeV

Integrated inclusive J/ ψ production cross sections:

 $\begin{array}{c} \sigma(2.5 < y < 4) = 6,31 \pm 0.25(\text{stat}) \pm 0.8(\text{syst}) + 0.95(\lambda_{\text{CS}} = +1) - 1.96(\lambda_{\text{CS}} = -1) \ \mu\text{b} \\ \sigma(|y| < 0.9) = 10,7 \pm 1.2(\text{stat}) \pm 1.7(\text{syst}) + 1.6(\lambda_{\text{HE}} = +1) - 2.3(\lambda_{\text{HE}} = -1) \ \mu\text{b} \end{array} \right] \begin{array}{c} \textbf{7 TeV} \\ \textbf{arXiv:} \textbf{1105.0380} \\ \textbf{arXiv:} \textbf{1105.0380} \end{array}$

 $\begin{array}{c} \sigma(2.5 < y < 4) = 3,46 \pm 0.13(\text{stat}) \pm 0.32(\text{syst}) \pm 0.28(\text{lumi}) + 0.55(\lambda_{\text{CS}} = +1) - 1.11(\lambda_{\text{CS}} = -1) \ \mu\text{b} \\ \sigma(|y| < 0.9) = 6,44 \pm 1.42(\text{stat}) \pm 0.88(\text{syst}) \pm 0.52(\text{syst}) + 0.64(\lambda_{\text{HE}} = +1) - 1.42(\lambda_{\text{HE}} = -1) \ \mu\text{b} \end{array} \right] \ \begin{array}{c} \textbf{2.76 TeV} \\ \textbf{2.76 TeV} \\$

Comparison at 7 TeV with other LHC experiments: fair agreement both at forward rapidity (with LHCb) and at mid rapidity, where ALICE is complementary to ATLAS and CMS

At forward rapidity the $d^2\sigma/dydp_T$ was extracted at both the energies \rightarrow well reproduced by NRQCD calculations at NLO

11

17

 J/ψ yield as a function of the charged particle multiplicity studied at central and forward rapidities. Linear increase observed

The J/ ψ yield exhibits a weaker increase with dN_{ch}/d η than the high p_T muons (>80% of which are coming from heavy flavors). Different mechanisms can explain this observation such as kinematical effects, modification of the p_T distribution, modification of the bottom to charm ratio, etc..

STILL WORK FOR THE INTERPRETATION

Results: PbPb collisions at 2.76 TeV

 R_{AA} calculated only in the forward region:

$$R_{AA}^{i} = \frac{\gamma Y_{J/\psi}^{i}}{\langle T_{AA}^{i} \rangle \cdot \sigma_{J/\psi}^{inclu}(2.76 \, TeV)}$$

Raw yields were corrected for acc×eff:

 $Y_{J/\psi}^{i} = \frac{N_{J/\psi}^{i}}{B.R. \cdot Acc \times Eff \cdot N_{MB}^{i}}$

- p_T and y inputs taken from interpolation based on real data (F. Bossu *et al.*, arXiv:1103.2394)
- shadowing from EKS98 calculations (K.J.Eskola *et al.*, Eur. Phys. J. C9, 61, 1999)
- less than 2% dependence of tracking efficiency on the centrality

Normalization to the inclusive cross-section measured in pp at 2.76 TeV

Systematics dominated by signal extraction (up to 19% in the most central bin) and by the uncertainty on the pp inclusive cross-section measurement (13%)

14

17

The inclusive J/ ψ R_{AA} integrated over all the centralities is measured to be:

$R_{AA}^{0-80\%} = 0.49 \pm 0.03(stat) \pm 0.11(syst)$

The dependence of R_{AA} on centrality not strong note that the most peripheral class includes semi-central events!!

The comparison with the results obtained by PHENIX at forward rapidity (1.2<|y|<2.2) shows less suppression at LHC then at RHIC: hint for regeneration? Better agreement with PHENIX data at mid-rapidity, but not at very high N_{part}

We can compare the R_{AA} to pure shadowing predictions K.J.Eskola *et al.*, JHEP 0904:065, 2009 R. Vogt, Phys.Rev.C81:044903, 2010

Uncertainties on the shadowing predictions are very high: need of pA data at LHC for addressing cold nuclear matter issues

PbPb at $\sqrt{s}=2.76$ TeV : R_{CP}

The R_{CP} extracted in ALICE at forward rapidity is not in agreement with the one extracted by ATLAS at mid-rapidity, especially in central collisions

Higher suppression at higher p_T ? Or at central rapidities? Or both?

The mid-rapidity result in ALICE has too large errors to allow a comparison

Conclusions

17

17

ALICE has been studying inclusive J/ ψ production in a large rapidity region extending from -0.9 to 4 and down to $p_T=0$

The inclusive production cross-sections in pp collisions at 7 TeV and at 2.76 TeV , as well as the p_T and y differential cross sections, are in nice agreement with what found by the other LHC experiments both at forward rapidity and at mid-rapidity

The measured $d^2\sigma/dp_T dy$ is in good agreement with NRQCD NLO predictions at both the energies

The inclusive J/ ψ yield shows a linear increase as a function of dN_{ch}/d η

In PbPb at 2.76 TeV the R_{AA} factor was measured at forward rapidity as a function of the centrality.

Comparison with the PHENIX \rightarrow less suppression at LHC with respect to RICH in central collisions. The interpretaion of this result will be simpler when pA data at the same energy will be taken

The R_{CP} was also measured. The factor is larger with respect to what ATLAS measures at midrapidity, possibly reflecting some kinematical dependence of the factor itself