Experiments at the high energy frontier: achievements and future challenges

- Recent past solid foundation
 - LEP, HERA, Tevatron
- Present day pointing the way
 - Tevatron, LHC
- Next steps
 - Detector upgrades for HL-LHC
 - Linear collider ILC/CLIC

Joint ECFA-EPS Session, Grenoble, 23 July 2011 Pippa Wells, CERN

Acknowledgements

- Many thanks for their help in finding information to:
 - P. Allport, A. Ball, T. Behnke, T. Carli, K. Gill
 - G. Hamel De Monchenault , M. Hildreth, E. van der Kraaij,
 - E. James, M. Lancaster, L. Linssen, E. Migliore, J. Nash, M. Nessi,
 - M. Oreglia, C. Parkes, A. Perieanu, L. Nodulman, G. Rolandi,
 - A. Salzburger, T. Shears, D. South, S. Stapnes, R. Teuscher,
 - M. Thompson, E. Torrence, M. Verzocchi, A. White, G. Wilson

http://lepewwg.web.cern.ch/LEPEWWG/

	Measurement	Fit	IO^{m}	eas_(Ͻ ^{fit} l/σ ^m	eas
			<u> </u>	1	. 2 .	_3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02768	-			
m _z [GeV]	91.1875 ± 0.0021	91.1874				
Γ _z [GeV]	2.4952 ± 0.0023	2.4959	-			
$\sigma_{had}^{0}\left[nb ight]$	41.540 ± 0.037	41.479			-	
R _I	20.767 ± 0.025	20.742				
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01645				
A _I (P _τ)	0.1465 ± 0.0032	0.1481				
R _b	0.21629 ± 0.00066	0.21579		•		
R _c	0.1721 ± 0.0030	0.1723				
A ^{0,b} _{fb}	0.0992 ± 0.0016	0.1038				
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742				
A _b	0.923 ± 0.020	0.935				
A _c	0.670 ± 0.027	0.668				
A _I (SLD)	0.1513 ± 0.0021	0.1481			•	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314		-		
m _w [GeV]	80.399 ± 0.023	80.379		-		
Г _w [GeV]	2.085 ± 0.042	2.092	•			
m _t [GeV]	173.3 ± 1.1	173.4	•			
-			ļ		. .	
July 2010			0	1	2	3

- Z and W mass, width and couplings
 - m_z precision 2.1 MeV, (of which 1.7 MeV from beam energy)
 - Some intriguing discrepancies eg. asymmetries
- QCD, B physics
- Constraints on Higgs mass from direct searches and electroweak fits
- Constraints on SUSY and other physics beyond the Standard Model

23 July 2011

HERA

- Neutral and charged current cross sections vs Q²
- Searches for new particles
- H1 and ZEUS combined results being finalised
- Proton structure: PDF fits improve predictions for LHC

Tevatron – CDF and D0

- Top mass precision of 1.1 GeV (Summer 2010)
 - Will be below stated LHC goal of 1 GeV with latest updates
- Tevatron W Mass uncertainty 31 MeV
 - Combining with LEP, world average precision 23 MeV
 - Ultimate precision may be ~15 MeV

Electroweak and top cross-sections

LHC with 1fb⁻¹ at 7 TeV

- Experiments and collider are operating very well
- 20th century discoveries firmly re-established at the LHC
- Sensitivity to physics beyond the Standard Model and beyond the Tevatron reach

LHC jets

- Inclusive jet distribution:
 - Individual jets with p_T greater than 1 TeV

- Dijet mass spectrum
 - Extends to 4 TeV, exclude eg. q* with m<2.49 TeV

LHC analysis chain in full swing

- Headline physics results depend on detailed technical studies
 - Operation, trigger, calibration, grid computing
 - Identifying leptons, jets, missing energy
 - Understanding beam and instrumental backgrounds, and effects of pile-up
 - Luminosity uncertainty 3.5 to 4% level.
- Examples: Top pair production, W charge asymmetry

Tevatron Higgs search

- From March 2011, exclude at 95% C.L.: $158 < m_H < 173 \text{ GeV}$
- New Tevatron combination will be shown in next week's plenary talk
 - "No channel left behind"; "Stay tuned...."
- Expect about 10 fb⁻¹ for analysis per experiment by end of Sept 2011

LHC Higgs

- Expect to close the book on the existence or otherwise of a Standard Model-like Higgs with the 2011-2012 data sample (10 fb⁻¹)
- Very exciting new results at this conference with 1fb⁻¹
- First LHC combinations are underway

LHC SUSY and exotica

- Many new results with improved sensitivity
 - Unfortunately no sign of physics beyond the Standard Model
 - Still a long way to go with more luminosity and higher energy
- Examples: SUSY exclusions in with 2010 data

LHC draft plan

Tracker related upgrades

Detector upgrades timeline

2009		Startup	
2010		Phase-0	
2011		ATLAS: Replace minimum bias scintillators; cryo, magnet and	
2012		muon consolidation; new shielding; AI beam pipes	~10 fb⁻¹
2013	LS1	CMS: Endcap muon 4th layer, shielding,1st layer granularity;	
2014		 replace photodetectors of forward and outer HCAL;	
2015		replace beam scintillation counters; cryo, UPS, movement	
2016		system & barrel muon consolidation; ALARA shielding test	
2017		Phase-1	~50 fb⁻¹
2018	LS2	ATLAS: New muon small wheels; topological trigger; higher	_
2019		granularity L1 trigger; warm mini FCAL if needed	
2020		CMS: Replace barrel and endcap HCAL photodetectors & revise	
2021		readout for depth granularity; major trigger revision	~300 fb ⁻¹
2022	LS3	Phase-2 possibilities	
2023		ATLAS: new FCAL; additional muon chambers; shielding;	
		LAr cold electronics if needed; new calo front-end	
2030?		CMS: major electronics consolidation/replacement; new	~3000 fb ⁻
		ECAL endcaps?; DAQ upgrade; fwd region revision	

- Direct measurements of radiation and cavern fluences can be made and compared with simulation
- Also compare silicon detector evolution with expectation
 - Leakage current
 - Depletion voltage
- Important for long term survival

¹⁷

ATLAS new pixel layer

- Insertable b-layer (IBL) to be installed together with lower radius beam pipe.
 - Smaller pixels (50x400 μ m \rightarrow 50x250 μ m)
 - New readout chip
- Fast track for installation in 2013
 - Full production of planar sensors. Also manufacture 3d sensors for possible use in forward part, taking advantage of geometry

Planar pixel sensors

3d sensors – shorter path length for charge flow n+ etched and filled from top

p+ etched and filled from bottom

Present pixels

IBL on new beam pipe

23 July 2011

CMS phase-1 pixel upgrade

Upgrade for design lumi. Aim to be ready end 2015

- Additional layer (→ 4 barrels, 3 disks). Smaller radius beam pipe
- Improved read out chip (buffer, link speed) to prevent data loss
- CO₂ evaporative cooling, displaced optical transmitters and revised service routing result in less total material than present pixel

23 July 2011

CMS phase-1 endcap muon and HCAL

- ME4/2 CSC chambers & ME4/1+2 RPC chambers to be added, completing original design
- ME1 readout granularity increased
- New shielding wall

- Hybrid Photodiodes (HPD) of HCAL have discharge problems in low B-field.
 - Work OK at full field
- Silicon Photomultipliers (SiPM) now available as alternative
 - Commercial SiPMs already OK for outer HCAL
 - R&D in progress for fully satisfactory version for barrel and endcap

23 July 2011

ATLAS muon small wheel

small & big wheels

- Reduce forward muon fake rate
- New small wheel with high rate tracking and fast segment finding for L1 trigger input
- Also space for extra neutron shielding

Small Tube MDTs

Large area micromegas

High rate TGCs

23 July 2011

ATLAS muon small wheel

small & big wheels

- Reduce forward muon fake rate
- New small wheel with high rate tracking and fast segment finding for L1 trigger input
- Also space for extra neutron shielding

Small Tube MDTs

Large area micromegas

High rate TGCs

23 July 2011

LHC detector upgrades - summary

- ATLAS Letter of Intent for the Phase1 Upgrade
 - In preparation for end 2011
- CMS Technical Proposal for the Upgrade of the CMS Detector Through 2020
 - [CERN-LHCC-2011-006 ; CMS-UG-TP-1 ; LHCC-P-004]
 - Includes discussion of Phase-2 R&D in the appendix
- The upgrade path is clear for the next ~10 years
 - Clear does not mean "simple"
 - R&D ongoing in parallel with simulation studies
 - Must be flexible in case of surprises from the data analysis
 - Understand cavern backgrounds, radiation doses and radiation damage with present detectors
 - Shutdown planning must include time-consuming consolidation work vital to maintain performance
 - Phase 2 detectors for HL-LHC to be designed in detail

LC design requirements

Areas requiring significantly improved precision compared to LHC detectors to achieve the physics goals of ILC/CLIC:

- Jet energy resolution to $\sigma(E)/E_{iet} \sim 3\%$ [LHC: ~10% at 100 GeV]
 - distinguish hadronic decays of W, Z, H, top, χ
 - high granularity calorimeters and particle flow algorithms
- Momentum resolution $\sigma(1/p_T) = 5 \times 10^{-5} \text{ (GeV}^{-1})$ [LHC: $\sigma(1/p_T) = \sim 2 \times 10^{-4} \text{ (GeV}^{-1})$]
 - Higgs recoil mass (HZ events) and SUSY decay end-points
- Impact parameter resolution $\sigma = 5 \oplus 10/(p \sin^{3/2} \theta) \mu m$ [LHC: $\sigma = 20 \oplus 100/(p \sin^{3/2} \theta) \mu m$]
 - Identify Z and H heavy quark (b, c) decays
- Implications for tracker:
 - Minimise material in trackers to reduce multiple scattering
 - Sensor precision must be matched by stable structures and precise alignment

LC vs LHC environment

- Detectors need different aspect ratio to match distribution of interesting physics events
 - Also final focus quadrupoles as close as possible to the interaction point at LC
- Beam backgrounds
 - Most difficult background from $\gamma\gamma \rightarrow$ hadrons
 - However, no issue of radiation damage [10⁻⁴ times LHC]
- Beam time structure bunch trains with typically one interesting event per train
 - Can read out all events without a hardware trigger, compared to LHC reduction from 40 MHz to <100 kHz at level 1

ILC detectors

- ILD: International Large Detector
 - "Large" tracker radius 1.8m, silicon and TPC
 - High granularity calorimetry for particle flow analysis
 - Both in large solenoid with 3.5 T field

SiD: Silicon Detector

- Tracker radius 1.2m, all silicon
- High granularity calorimetry for particle flow analysis
- Both in large solenoid with 5 T field

 pushing magnet technology

ILD changes for CLIC

Final focus stabilisation at CLIC

23 July 2011

Two LC experiments in push-pull

Push-pull

- Benefits
 - Complementary detectors with different technologies
 - Independent analyses
- Disadvantages
 - Additional cost and complexity of mechanics and services
 - Alignment reproducibility for machine and experiment
 - Loss of accelerator efficiency after interruption to smooth running
- Example of a famous recent cross check from CDF and D0

Joint ECFA-EPS, Pippa Wells, CERN

Beam time structure

- LHC design 25 ns bunch spacing, ~continuous
 - Precise time measurements to reject non-collision background
- ILC 5 Hz trains of 1312 bunches, 738 ns apart
 - (spacing depends on final choice of RF scheme)
- CLIC 50 Hz trains of 312 bunches, 0.5 ns apart
- ILC/CLIC: Read out full train with no hardware trigger
 - Expect one interesting event per train
 - Time stamping of hits to reject background offline
 - Allows "pulse powering" of tracker at 5 Hz or 50 Hz

Beam backgrounds

• CLIC situation more extreme than ILC due to smaller beam size.

Beamstrahlung

• CLIC at 3 TeV:

- Coherent pairs 3.8 x 10⁸ per bunch crossing
 - Disappear down beam pipe
- Incoherent pairs 3.0 x 10⁵ per bunch crossing
 - Suppressed by solenoid
- $\gamma\gamma \rightarrow$ hadrons 3.2 events per BC
 - 28 particles, 50 GeV per BC, 15 TeV per train!
- Halo muons from beam delivery system
 - Maybe up to 5 muons per train, spread over detector surface
- Compare to LHC at design luminosity:
 - ~25 minimum bias pile-up events per bunch crossing, spread in z but not in time. (Bunch length o(100) μm at LC, few cm at LHC)

23 July 2011

LC Tracker feasibility

- Aim for air cooling, to reduce material from pipes and fluid
 - Low radiation dose, so no need to keep silicon sub-zero
 - Read out in bursts with pulse powering \rightarrow lower heat load
- Possible challenges studies are starting
 - Vibrations from air flow
 - Damage from repeated ramping of voltages in B-field
 - Thermal expansion/contraction
- For all stability issues, plans to use laser alignment systems: infra-red laser alignment (SiD) and frequency scanning interferometry (ILD)

PLUME: Design, fabricate and test a Pixel Ladder with Ultra-low Material budgEt based on CMOS sensors.

LHC alignment

- Alignment stability?
- CMS BPIX half barrel drifts along beam line corrected by calibration

- ATLAS Frequency Scanning Interferometry internal to SCT barrel and end caps shows sub-micron movements outside cooling or Bfield changes.
- CMS silicon strips tracker Laser Alignment System (LAS) shows modules stable to 1-2 μm (rms)

LC Calorimeter R&D

- CALICE collaboration have made several prototypes and carried out beam tests, including
 - Silicon tungsten ECAL
 - Scintillator ECAL and HCAL
 - Gaseous HCAL
 - Scintillator tungsten HCAL for CLIC
- Input to:
 - Geant-4 comparisons
 - Particle flow algorithms

Scintillator tungsten HCAL prototype

Scintillator tiles, 3*3 cm (at centre) Read out by SiPM (and wave-length shifting fibre)

Particle Flow at CMS

PF has many applications in CMS. Example: E_{T}^{miss} resolution, improved with tracks, and further improved with particle flow algorithm.

Comparison: ATLAS E_T^{miss} resolution for min bias events, and extended to $\Sigma E_T = 14$ TeV with PbPb heavy ion sample, using calo only.

23 July 2011

0

50

100

10

7⊨ LCW

 E_x^{miss}, E_y^{miss} Resolution [GeV]

Joint ECFA-EPS, Pippa Wells, CERN

Jet energy resolution

Particle Flow Algorithm for CLIC

1 TeV Z \rightarrow qq, with 60 BC overlaid \rightarrow 1.4 TeV of background

23 July 2011

PFA with time stamping

Loose Selection of objects \rightarrow 0.3 TeV of background

40

PFA with time stamping

Tight selection \rightarrow 0.1 TeV of background

ILC and CLIC detectors timeline

- ILC reference design report (4 volumes) August 2007
 - Volume 2: Physics, Volume 4: Detectors
- Letters of Intent 2009
 - IDAG (International Detector Advisory Group) validated two detector concepts, ILD and SiD
- Collaborations working towards Detailed Baseline Design Report (DBD) in 2012
 - R&D in progress. Will also account for accelerator changes SB2009 (Strawman Baseline) eg. reducing number of bunches by factor 2
- CLIC detector designs based on ILD and SiD
 - Modifications for higher beam energy and beam structure
- Working towards conceptual design report (CDR) in the second half of this year (2011).
 - Volume 2: physics and detector
- Issues of reduced funding for linear collider in some countries

Conclusions and outlook

- Firm bedrock of Standard Model
 - Will need time to complete HERA and Tevatron analyses
- LHC machine and experiments great performance at 7 TeV
 - New discoveries and non-discoveries (Higgs and beyond the SM) will point the way for future machines
- LHC detector upgrades
 - The path is rather well defined, and very challenging
 - May need to adapt in the light of experience and (non)-discoveries
- ILC and CLIC
 - Wise strategy of designing CLIC detectors with ILC starting point
 - Clear R&D areas identified, with collaborations for common efforts
 - Challenge of making definite designs for several possible futures
- We are enjoying the chance to live in interesting times!