# Regional Flavour Factories followed by ECFA

"One of the ECFA roles is an incubator for new ideas helping them to grow to the next stage"

Joint ECFA-EPS session
Europhysics Conference on High Energy Physics, 23
July 2011, Grenoble, France

Tatsuya NAKADA, ECFA Chair Ecole Polytechnique Fédérale de Lausanne (EPFL)





- Recent ECFA activities on flavour physics
  - Review on the INFN Super B Factory project
     March 2008 to November 2008 by RECFA working
     group. Report endorsed by PECFA 27-29.11.2008
  - Presentation on tau-charm factory projects by Novosibirsk (BINP) and Turkey to <u>PECFA</u> <u>26-27.11.2010</u>. Progress to be followed.
  - Presentation of tau-charm factory project by BINP to <u>RECFA 12.3.2011</u>. RECFA recognised the physics case for a tau-charm factory, and saw that its scale was a national project. This has been communicated to BINP



#### Conclusions of the 2008 studies

#### Physics III

- By 2015, LHCb will explore 10 fb<sup>-1</sup> of data. A step beyond the "LHCb" era for an e<sup>+</sup>e<sup>-</sup> machine requires >50 time more statistics than now to unambiguously establish any effects of beyond the Standard Model for those, which exhibit no sign now, or which may appear in a couple of years at LHCb ( more "inclusive" ΔB=1 b→s and b→d studies may become important?).
- LFV, e.g.  $\tau \rightarrow e \gamma$  would be a big issue. (interesting to see what  $\mu \rightarrow e \gamma$  will say in coming years)



#### Conclusions of the 2008 studies

#### Physics III

- The main goal of PEB-II and KEKB was a quantitative test of the KM mechanism of CP violation from the  $B_d \rightarrow J/\psi K_S$  decays.
  - ⇒ CKM parameters were known enough to make a good prediction for the required luminosity at the time of their construction.
- For a SuperB project, there is no "success guaranteed" minimum luminosity, since we don't know the New Physics parameters.
  - ⇒But this is the case for the most of the high energy frontier accelerators too.

Geneva, 28 Nov 2008 Plenary ECFA T. Nakada

15



#### Conclusions of the 2008 studies

#### Conclusions I

- Flavour physics is an important part of the European particle physics programme. Rich physics programme.
  - -European Strategy Document already recognises a flavour physics facility as a national or regional activity-
- An e<sup>+</sup>e<sup>-</sup> collider at Y(4S) energy region would be a significant milestone if
  - -much more than 50 ab<sup>-1</sup> data by the end of  $\sim 2020$
  - -moderate cost



#### Conclusions of the 2008 studies

#### Conclusions II

- INFN Project addresses these points by
  - Very high luminosity >10<sup>36</sup> with a unique machine concept
  - Reutilizing PEP-II and BaBar parts
- Machine R&D for the TDR should be strongly supported to show that the concept can be realised. (R&D is also useful for the future machines. Continue collaboration with KEK?)
- Still large amount of work needed for the TDR and a strong team of machine physicists and engineers centrally located should be formed very soon.



#### Conclusions of the 2008 studies

#### Conclusions III

- A strong team of experienced machine physicists should be prepared for the operation to achieve the required performance.
- For considering an approval, there should be
  - a clear plan containing realistic technical milestones
  - a description of required resources and concrete strategy how to obtain them

with a goal to achieve much more than 50 ab<sup>-1</sup> data by ~2020 to make a meaningful impact. If much later than this, physics landscape could be drastically different.



### Two new inputs since then

- SuperKEKB changed its design from a high current scheme to the INFN scheme using small emittance beams, and its construction has started
- LHCb has started to take data delivering expected performance, i.e. substantial achievement could be expected from LHCb before SuperB factories start data taking



## Two new inputs since then

- SuperKEKB changed its design from a high current scheme to the INFN scheme using small emittance beams, and its construction has started
- LHCb has started to take data delivering expected performance, i.e. substantial achievement could be expected from LHCb before SuperB factories start data taking



#### Final remarks

- ECFA believes that the previous conclusions remain valid and hope that issues given there will be addressed in appropriate time
- Even the INFN SuperB machine is a "national project", its fate has an impact on the European particle physics. This could be a relevant issue for the Strategy Session of CERN Council.



- Recent ECFA activities on flavour physics
  - Review on the INFN Super B Factory project
     March 2008 to November 2008 by RECFA working
     group. Report endorsed by PECFA 27-29.11.2008
  - Presentation on tau-charm factory projects by Novosibirsk (BINP) and Turkey to <u>PECFA</u> <u>26-27.11.2010</u>. Progress to be followed.
  - Presentation of tau-charm factory project by BINP to <u>RECFA 12.3.2011</u>. RECFA recognised the physics case for a tau-charm factory, and saw that its scale was a national project. This has been communicated to BINP



## Recent ECFA activities on flavour physics

- Review on the INFN Super B Factory project
   March 2008 to November 2008 by RECFA working
   group. Report endorsed by PECFA 27-29.11.2008
- Presentation on tau-charm factory projects by Novosibirsk (BINP) and Turkey to <u>PECFA</u> <u>26-27.11.2010</u>. Progress to be followed.
- Presentation of tau-charm factory project by BINP to <u>RECFA 12.3.2011</u>. RECFA recognised the physics case for a tau-charm factory, and saw that its scale was a national project. This has been communicated to BINP



- RECFA Remarks made for Novosibirsk taucharm factory
  - High precision tau and charm physics
    - important in itself
    - provide crucial information for the interpretation of measurements by the flavour physics experiments at the LHC and the Super B Factories
  - Unique advantage of working at the tau/charm threshold
  - Such a machine could be built as a national project and BINP has necessary expertise