Regional Flavour Factories followed by ECFA

“One of the ECFA roles is an incubator for new ideas helping them to grow to the next stage”

Joint ECFA–EPS session
Europhysics Conference on High Energy Physics, 23 July 2011, Grenoble, France

Tatsuya NAKADA, ECFA Chair
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Recent ECFA activities on flavour physics

- Presentation on tau-charm factory projects by Novosibirsk (BINP) and Turkey to PECFA 26-27.11.2010. Progress to be followed.

- Presentation of tau-charm factory project by BINP to RECFA 12.3.2011. RECFA recognised the physics case for a tau-charm factory, and saw that its scale was a national project. This has been communicated to BINP
• Conclusions of the 2008 studies

Physics III

• By 2015, LHCb will explore 10 \(fb^{-1} \) of data. A step beyond the “LHCb” era for an e^{+}e^{-} machine requires >50 time more statistics than now to unambiguously establish any effects of beyond the Standard Model for those, which exhibit no sign now, or which may appear in a couple of years at LHCb (more “inclusive” \(\Delta B = 1 \) \(b \to s \) and \(b \to d \) studies may become important?).

• LFV, e.g. \(\tau \to e\gamma \) would be a big issue. (interesting to see what \(\mu \to e\gamma \) will say in coming years)
• Conclusions of the 2008 studies

Physics III

• The main goal of PEB-II and KEKB was a quantitative test of the KM mechanism of CP violation from the $B_d \rightarrow J/\psi K_s$ decays.
 ⇒ CKM parameters were known enough to make a good prediction for the required luminosity at the time of their construction.

• For a SuperB project, there is no "success guaranteed" minimum luminosity, since we don’t know the New Physics parameters.
 ⇒ But this is the case for the most of the high energy frontier accelerators too.
• Conclusions of the 2008 studies

Conclusions I

• Flavour physics is an important part of the European particle physics programme. Rich physics programme.

- European Strategy Document already recognises a flavour physics facility as a national or regional activity-

• An e⁺e⁻ collider at Y(4S) energy region would be a significant milestone if

 - much more than 50 ab⁻¹ data by the end of ~2020
 - moderate cost
Conclusions II

• INFN Project addresses these points by
 – Very high luminosity $>10^{36}$ with a unique machine concept
 – Reutilizing PEP-II and BaBar parts

• Machine R&D for the TDR should be strongly supported to show that the concept can be realised. (R&D is also useful for the future machines. Continue collaboration with KEK?)

• Still large amount of work needed for the TDR and a strong team of machine physicists and engineers centrally located should be formed very soon.

Geneva, 28 Nov 2008

T. Nakada
Conclusions of the 2008 studies

Conclusions III

- A strong team of experienced machine physicists should be prepared for the operation to achieve the required performance.

- For considering an approval, there should be
 - a clear plan containing realistic technical milestones
 - a description of required resources and concrete strategy how to obtain them

with a goal to achieve much more than 50 ab$^{-1}$ data by \sim2020 to make a meaningful impact. If much later than this, physics landscape could be drastically different.
• **Two new inputs since then**

 – SuperKEKB changed its design from a high current scheme to the INFN scheme using small emittance beams, and its construction has started.

 – LHCb has started to take data delivering expected performance, i.e. substantial achievement could be expected from LHCb before SuperB factories start data taking.
• **Two new inputs since then**

 – SuperKEKB changed its design from a high current scheme to the INFN scheme using small emittance beams, and its construction has started.

 – LHCb has started to take data delivering expected performance, i.e. substantial achievement could be expected from LHCb before SuperB factories start data taking.
• Final remarks
 – ECFA believes that the previous conclusions remain valid and hope that issues given there will be addressed in appropriate time
 – Even the INFN SuperB machine is a “national project”, its fate has an impact on the European particle physics. This could be a relevant issue for the Strategy Session of CERN Council.
• Recent ECFA activities on flavour physics
 – Presentation on tau-charm factory projects by Novosibirsk (BINP) and Turkey to PECFA 26-27.11.2010. Progress to be followed.
 – Presentation of tau-charm factory project by BINP to RECFA 12.3.2011. RECFA recognised the physics case for a tau-charm factory, and saw that its scale was a national project. This has been communicated to BINP
Recent ECFA activities on flavour physics

- Presentation on tau-charm factory projects by Novosibirsk (BINP) and Turkey to PECFA 26-27.11.2010. Progress to be followed.

- Presentation of tau-charm factory project by BINP to RECFA 12.3.2011. RECFA recognised the physics case for a tau-charm factory, and saw that its scale was a national project. This has been communicated to BINP.
• **RECFA Remarks made for Novosibirsk tau-charm factory**

 – High precision tau and charm physics
 • important in itself
 • provide crucial information for the interpretation of measurements by the flavour physics experiments at the LHC and the Super B Factories

 – Unique advantage of working at the tau/charm threshold

 – Such a machine could be built as a national project and BINP has necessary expertise