



## Marcello A. Giorgi INFN& Università di Pisa

Joint EPS-ECFA session @ EPS HEP 2011 Grenoble July 23,2011



SuperB has been approved as the first in a list of 14 "flagship" projects within the new national research plan (December 2010).

- The national research plan has been endorsed by "CIPE" (the institution responsible for infrastructure long term plans) (April 2011).
- A financial allocation of 250 M€ in about five years has been approved for the "superb flavour factory".
- At the end of 2010 an initial sum of 19 M€ has been allocated.

A sum of the order of 50 M€ is expected in 2011 budget.

## Priorities

The site choice The management plan The governance model The WBS

Start Spending for: Integrating the team: enrollment of new people Civil engineering projects Preliminary site related works

The transition from TDR to construction phase



Requirements defined in a document by the collaboration and reviewed by an International Review Committee:

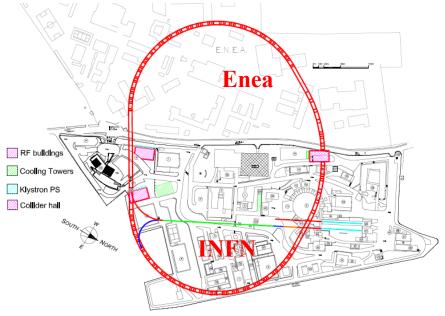
- Size
- Electric power supply
- Water for cooling
- Low ground vibrations.
- Close to INFN and other research infrastructures.

Preferred: inside LNF or nearby.

# Options considered

#### LNF but:

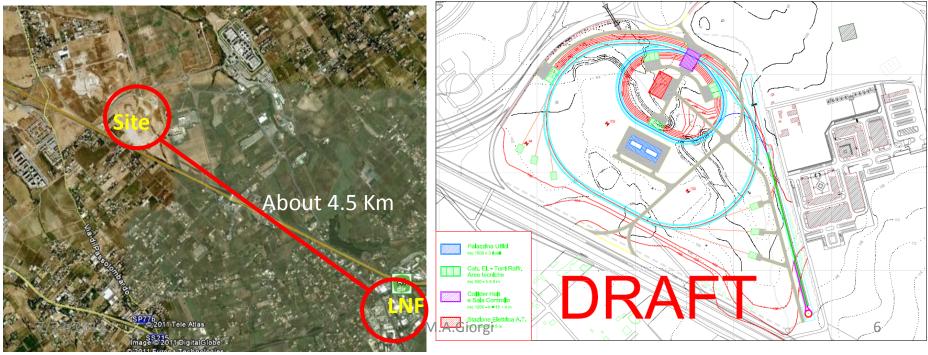
- Need to go deep underground
- Surface space strongly constrained
- Half below the "Enea" lab
- Strong limitations on possible light source beamlines
- More difficult evolution into an international structure


#### Other locations far from LNF :

- Piemonte ( near Torino)
- Sardinia
- Campania
- Puglia

And in the Rome area:

#### **Private land (green field)**


The campus of Tor Vergata (one big University not a Green Field)



# Tor Vergata Choice

A letter from the Rector on May 28,2011 has made the site available The decision to move with this solution was taken by the May 29 INFN board of directors .

# The site has been decided ! It is not a GREEN FIELD!



## Organization & Structure : 3 Phases

- INFN: the past and present phase
- Consortium: as soon as possible as an independent legal entity
  - More flexibility in the organisation
  - Can directly associate foreign partners (EGO like)
  - An "intermediate solution"
- Initial partners: INFN, Tor Vergata and soon IIT
- European consortium (ERIC): the final structure

1.

## Governance

#### Cern like organisation

- A director general and a directorate
  - Departments under director's supervision
- Scientific evaluation committee
  - Science
  - Machine
- Finance evaluation committee
- A known and working scheme!

## Governance

#### Cern like organisation

- A director general and a directorate
  - Departments under director's supervision
- Scientific evaluation committee
  - Science
  - Machine
- Finance evaluation committee

A known and working scheme!

#### The Name of the Structure Cabibbo Lab

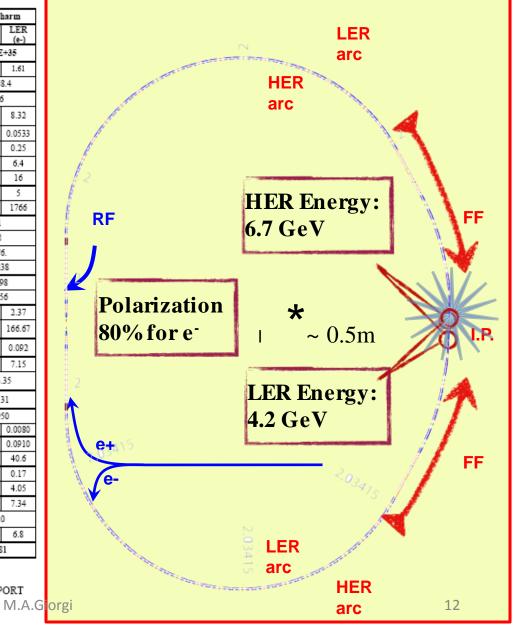
## Meanwhile

- Moving towards the completion of TDR.
- Machine parameters are stable.
- Detector R&D is in an advanced status, of testing on beam the prototypes
- A well integrated group of theorists and experimentalists is focusing on the program for discovery with a careful evaluation of sensitivities and looking at interplay between different measurements looking at complementarities of various flavor measurements.

The impact of SuperB on flavour physics July 1, 2011

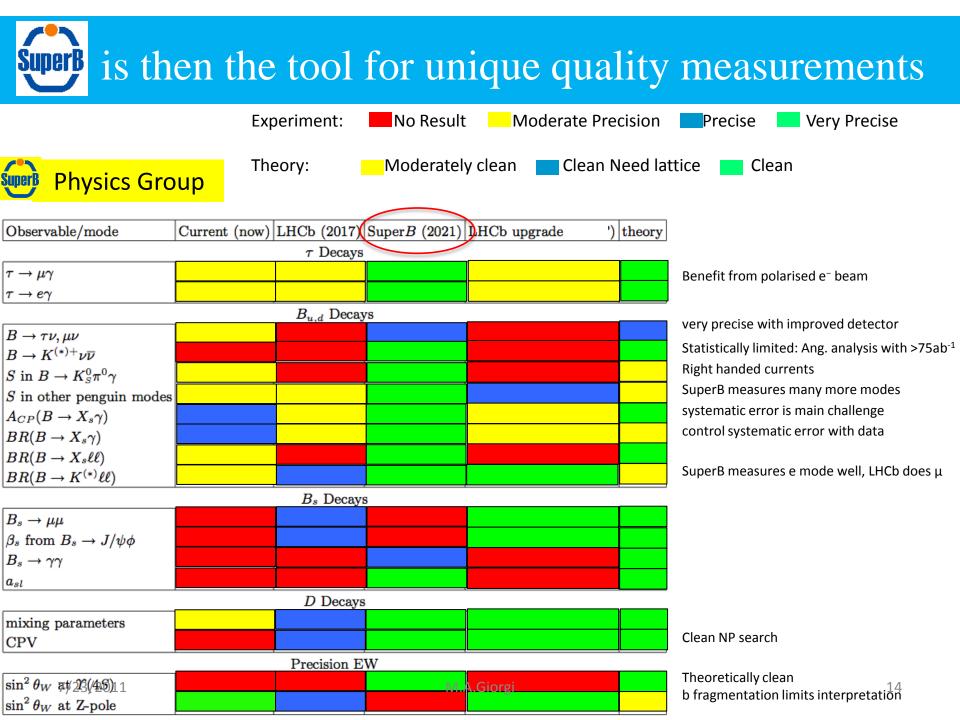
#### Abstract

This report provides a succinct summary of the physics programme of SuperB, and describes that potential in the context of experiments making measurements in flavour physics over the next 10 to 20 years. Detailed 7/23/2@paparisons are made with Belle II and LHCb, the other B physics experiments that will run in this decade. SuperB will play a crucial role in defining the landscape of flavour physics over the next 20 years.



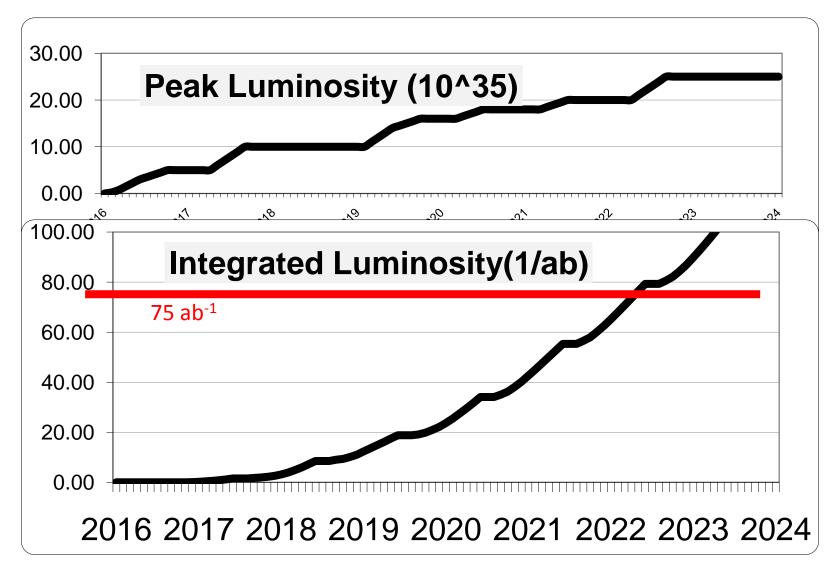

| Parameter                                                                                                     | Requirement                                               | Comment                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Luminosity (top-up mode)                                                                                      | 10 <sup>36</sup> cm <sup>-2</sup> s <sup>-1</sup> @ Y(4S) | Baseline/Flexibility with headroom at 4. 10 <sup>36</sup> cm <sup>-2</sup> s <sup>-1</sup>                                                                                                                                                                  |
| Integrated luminosity                                                                                         | 75 ab <sup>-1</sup>                                       | Based on a "New Snowmass Year" of<br>1.5 x 10 <sup>7</sup> seconds<br>(PEP-II & KEKB experience-based)                                                                                                                                                      |
| CM energy range                                                                                               | au threshold to $Y(5S)$                                   | For Charm special runs (still asymmetric)                                                                                                                                                                                                                   |
| Minimum boost                                                                                                 | βγ ≈0.237<br>~(4.18x6.7GeV)                               | 1 cm beam pipe radius. First measured point at 1.5 cm                                                                                                                                                                                                       |
| e <sup>-</sup> Polarization<br>Boost up to 0.9 in runs at<br>low energy under evaluation<br>for charm physics | ≥80%                                                      | Enables $\tau$ <i>CP</i> and <i>T</i> violation studies,<br>measurement of $\tau$ <i>g</i> -2 and improves<br>sensitivity to lepton flavor-violating<br>decays. Detailed simulation, needed<br>to ascertain a more precise<br>requirement, are in progress. |

## Collider Parameters are "stable"


|                                                  |                                  | Base Line Low Emittance |        | High Current |        | Tau-charm |        |           |        |
|--------------------------------------------------|----------------------------------|-------------------------|--------|--------------|--------|-----------|--------|-----------|--------|
| Parameter                                        | Units                            | HER                     | LER    | HER          | LER    | HER       | LER    | HER       | LER    |
| LUMINOSITY                                       | cm <sup>-2</sup> s <sup>-1</sup> | (e+) (e-)               |        | (e+) (e-)    |        | (e+) (e-) |        | (e+) (e-) |        |
|                                                  |                                  | 1.00E+36                |        | 1.00E+36     |        | 1.00E+36  |        | 1.00E+35  |        |
| Energy                                           | GeV                              | 6.7 4.18                |        | 6.7 4.18     |        | 6.7 4.18  |        | 2.58 1.61 |        |
| Circumference                                    | <u>m</u>                         | 1258.4                  |        | 1258.4       |        | 1258.4    |        | 1258.4    |        |
| X-Angle (full)                                   | mrad                             | 66                      |        | 66           |        | 66        |        | 66        |        |
| β <sub>x</sub> @ IP                              | сш                               | 2.6                     | 3.2    | 2.6          | 3.2    | 5.06      | 6.22   | 6.76      | 8.32   |
| β <sub>y</sub> @ IP                              | сш                               | 0.0253                  | 0.0205 | 0.0179       | 0.0145 | 0.0292    | 0.0237 | 0.0658    | 0.0533 |
| Coupling (full current)                          | 96                               | 0.25                    | 0.25   | 0.25         | 0.25   | 0.5       | 0.5    | 0.25      | 0.25   |
| Emittance x (with IBS)                           | nm                               | 2.00                    | 2.46   | 1.00         | 1.23   | 2.00      | 2.46   | 5.20      | б.4    |
| Emittance y                                      | pm                               | 5                       | 6.15   | 2.5          | 3.075  | 10        | 12.3   | 13        | 16     |
| Bunch length (full current)                      | mm                               | 5                       | 5      | 5            | 5      | 4.4       | 4.4    | 5         | 5      |
| Beam current                                     | mA                               | 1892                    | 2447   | 1460         | 1888   | 3094      | 4000   | 1365      | 1766   |
| Buckets distance                                 | #                                | 2                       |        | 2            |        | 1         |        | 1         |        |
| Ion gap                                          | 96                               | 2                       |        | 2            |        | 2         |        | 2         |        |
| RF frequency                                     | MHz                              | 476.                    |        | 476.         |        | 476.      |        | 476.      |        |
| Revolution frequency                             | MHz                              | 0.238                   |        | 0.238        |        | 0.238     |        | 0.238     |        |
| Harmonic number                                  | #                                | 1998                    |        | 1998         |        | 1998      |        | 1998      |        |
| Number of bunches                                | Ħ                                | 978                     |        | 978          |        | 1956      |        | 1956      |        |
| N. Particle/bunch (10 <sup>10</sup> )            | Ħ                                | 5.08                    | 6.56   | 3.92         | 5.06   | 4.15      | 5.36   | 1.83      | 2.37   |
| $\sigma_{\tau}$ effective                        | μm                               | 165.22                  | 165.30 | 165.22       | 165.30 | 145.60    | 145.78 | 166.12    | 166.67 |
| σ <sub>y</sub> @ IP                              | μш                               | 0.036                   | 0.036  | 0.021        | 0.021  | 0.054     | 0.0254 | 0.092     | 0.092  |
| Piwinski angle                                   | rad                              | 22.88                   | 18.60  | 32.36        | 26.30  | 14.43     | 11.74  | 8.80      | 7.15   |
| $\Sigma_{t}$ effective                           | μm                               | 233.35                  |        | 233.35       |        | 205.34    |        | 233.35    |        |
| Σ,                                               | μm                               | 0.050                   |        | 0.030        |        | 0.076     |        | 0.131     |        |
| Hourglass reduction factor                       |                                  | 0.950                   |        | 0.950        |        | 0.950     |        | 0.950     |        |
| Tune shift x                                     |                                  | 0.0021                  | 0.0033 | 0.0017       | 0.0025 | 0.0044    | 0.0067 | 0.0052    | 0.0080 |
| Tune shift y                                     |                                  | 0.097                   | 0.097  | 0.0891       | 0.0892 | 0.0684    | 0.0687 | 0.0909    | 0.0910 |
| Longitudinal damping time                        | msec                             | 13.4                    | 20.3   | 13.4         | 20.3   | 13.4      | 20.3   | 26.8      | 40.6   |
| Energy Loss/turn                                 | MeV                              | 2.11                    | 0.865  | 2.11         | 0.865  | 2.11      | 0.865  | 0.4       | 0.17   |
| Momentum compaction (10 <sup>-4</sup> )          |                                  | 4.36                    | 4.05   | 4.36         | 4.05   | 4.36      | 4.05   | 4.36      | 4.05   |
| Energy spread (10 <sup>-4</sup> ) (full current) | dE/E                             | 6.43                    | 7.34   | 6.43         | 7.34   | 6.43      | 7.34   | 6.43      | 7.34   |
| CM energy spread (10*)                           | dE/E                             | 5.0                     |        | 5.0          |        | 5.0       |        | 5.0       |        |
| Total lifetime                                   | min                              | 4.23                    | 4.48   | 3.05         | 3      | 7.08      | 7.73   | 11.4      | 6.8    |
| Total RF Wall Plug Power                         | MW                               | 16.38                   |        | 12.37        |        | 28.83     |        | 2.81      |        |
|                                                  |                                  |                         |        |              |        |           |        |           |        |

SUPERB COLLIDER PROGRESS REPORT




# **Future Super B Factories** ( **goal is 75 ab<sup>-1</sup> in 5 years**)

|                          | Or                                 | Super KEKB          |  |  |
|--------------------------|------------------------------------|---------------------|--|--|
| Peak Luminosity          | >10 <sup>36</sup>                  | $0.8 \ge 10^{36}$   |  |  |
| Integrated<br>Luminosity | 75 ab <sup>-1</sup>                | 50 ab <sup>-1</sup> |  |  |
| Site                     | Tor Vergata Campus                 | KEKB Laboratory     |  |  |
| Collisions               | mid 2016                           | 2015                |  |  |
| Polarization             | 80% electron beam                  | No                  |  |  |
| Low energy<br>running    | 10 <sup>35</sup> @ charm threshold | No                  |  |  |
| Approval status          | Approved                           | Approved            |  |  |





## **SuperB Luminosity model**

