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Motivation for PF Calorimetry

Need twice better jet energy resolution
in order to use hadronic boson decays
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Proposed solution — Particle Flow Algorithm

Charged energy (65% in jet) — perfectly measured in tracking

Photons (25%) — precisely measured in ECal
n/K, (only 10%) — measured in HCal with modest resolution

Confusion error in separation of showers is dominant

Separation of showers requires high segmentation
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I’ll concentrate on test beam results with analog approach
(Scintillator HCAL and Silicon ECAL)




Chued CALICE AHCAL prototype built in 2005-2007

(7608 channels)
a SiPMy
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AHCAL with novel SiPM readout demonstrated very reliable

performance during beam tests at CERN and FNAL in 2006-09
In 2010-11 Fe absorber was changed to 38 layers of 1cm W.

3x3cmA”2
1500 MIP
500 - 'I.
Calorimeter plane §
% §00 800 1000 90x90cmA2 :
ADC chanmel

38 layers
g of 2cm Fe

;|l|||| NI

; '| | 1l | | I|_l.l-‘i'll||t huu

2010 JINST 5_P05004

Now WHCAL is under tests at CERN for a CLIC detector development 4



Silicon/W ECAL Prototype 2008_JINST_3_P0800"

-30 layers, 9720 channels, 3 W thicknesses, 24X,
-Active silicon layers interleaved

‘Vel"y Fl‘on'l' End Ch'p / Structure 2.8 Structure 1.4 p
reqdou‘]’ on PCB (2x1.4mm of W plates) (1.4mm of W plates) II,’

Structure 4.2
{3x1.4mm of W plates)

Metal inserts

14 layer PCB, VFE (interfaze)
analogue signals - DAQ —
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-Conductively glued to PCB
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(;C Lateral shower profile

Lateral shower profile is critical for PFA performance
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Most models underestimate mean radius. FTF (v4.9.3) fits data best
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Depth from first interaction point [cm(Fe)]
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Data-MC comparison of pion
shower longitudinal profiles
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Logitudinal shower prof
point for 30-6eV 1" in high-granular

hadronic calorimeter
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Longitudinal shower profiles in Si/W ECAL

Sensitive to particle composition of showers
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All models have problems in reproducing longitudinal profile



L T : :
(E@a Multiplicity of tracks in hadronic showers

Identify MIP-like track Such delicate variables are not well described by MC
segments in event
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MIP-like tracks Identified in shower can be used for calibration



Calarimeter for IL

CLIC detector needs thicker HCAL: Fe
Limited knowledge of hadronic showers in W  ==>Test W/Sc calorimeter at CERN

Time structure of hadronic showers in W-Scintillator HCAL

=\

Time stamping important for CLIC in order to reduce background
Need to know the time structure of hadronic showers

Special timing layer of 3x3 cm”2 scintillator tiles (T3B)

placed after WHCAL at CERN tests

Fit response to a sum
of single photon signals

signal amplitude [V]

Determine Time of First Hit -
min 8 p.e. (~0.4 MIP)
within 9.6 ns

Time resolution for muons
~ 800 ps including trigger
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Time of First Hit in central T3B cell = [
:E-‘ = CALICE T3B MC 10 GeV tile 0
2 - 9333?3% HP
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(LHC standard used for CLIC detector studies) £ [ |

shows a pronounced tail

of late energy deposits 107

Data agrees better with 10°
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(variant with high precision neutron tracking) 10
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CAl{e2
The separation of charged and neutral clusters, crucial

for PFA performance, was studied with test beam data

2011_JINST_6_P07005

30 GeV

Two test beam showers |~ .,

were superimposed.
10 GeV

“neutral” hadron

Results of disentangling
by PandoraPFA was
confronted with MC

* ~ 18 cm separation of shower
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CAIES

The results of shower disentangling for data and MC are in a
good agreement for both the probability of correct reconstruction and
for the confusion error
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> No hidden imperfections in the real data (wrong calibration, saturation
correction, response non uniformity, dead or noisy channels, etc.)

which could deteriorate the PFA performance were found

> The agreement between data and MC makes reliable the detector optimization
based on simulation.

Pandora PFA passed the exam with REAL DATA from REAL CALORIMETERS
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;C Software Compensation

Global Method as example

¢ e response = 0.8 E lated with fracti f hit ith high E
— increased fluctuations nergy correlated with fraction ot hits with hig
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Leakage correction

Leakage strongly correlated with shower starting layer and energy in last 5 layers
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AHCAL high granularity allows corrections for leakage —

Considerable improvement in linearity and resolution is expected
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CAl{ed
CAIGS CONCLUSIONS

First generation of prototypes demonstrated a feasibility of highly granular
calorimeters for PFA at LC

High granularity data allow very detailed studies of hadronic showers
and tuning of MC models

MC models describe lateral and longitudinal shower profiles with 10-20% accuracy
Deviations are larger for more delicate variables like number of track segments

Shower time development critical for background reduction at CLIC
was measured in W/Scintillator calorimeter and will be used for detector optimization

The most critical part of PFA —

neutral particle reconstruction in vicinity of another hadronic shower

was successfully tested using real data

(noisy and dead channels, nonuniformity, calibration errors and nonlinearity, etc. —
all taken into account)

High granularity allows to correct for e/1r ratio with ~ 15-20% improvement in resolution

High granularity allows to correct for leakage.
Considerable improvement is expected in linearity and resolution
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L T : :
(I@a Multiplicity of tracks in hadronic showers

Identify MIP-like track
segments in event

1)

Entries (normalized to Integral

MG/Data

Such delicate variables are not well described by MC
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MIP-like tracks Identified in shower can be used for calibration

18



