Tests of High Granularity Particle Flow Calorimetry for Linear Colliders

Michael Danilov
ITEP, Moscow
On behalf of the CALICE Collaboration

~350 people from 17 countries
Motivation for PF Calorimetry

Need twice better jet energy resolution in order to use hadronic boson decays

Proposed solution – Particle Flow Algorithm

- Charged energy (65% in jet) – perfectly measured in tracking
- Photons (25%) – precisely measured in ECAL
- n/K_L (only 10%) – measured in HCAL with modest resolution
- Confusion error in separation of showers is dominant

Separation of showers requires high segmentation
CALICE Collaboration develops different technologies for PFA

I’ll concentrate on test beam results with analog approach (Scintillator HCAL and Silicon ECAL)
CALICE AHCAL prototype built in 2005-2007
(7608 channels)

AHCAL with novel SiPM readout demonstrated very reliable performance during beam tests at CERN and FNAL in 2006-09

In 2010-11 Fe absorber was changed to 38 layers of 1cm W. Now WHCAL is under tests at CERN for a CLIC detector development
Silicon/W ECAL Prototype

- 30 layers, 9720 channels, 3 W thicknesses, $24X_0$
- Active silicon layers interleaved
- Very Front End chip / readout on PCB

14 layer PCB, VFE analogue signals → DAQ

- 6x6 1x1cm² Si pads
- Conductively glued to PCB
Lateral shower profile is critical for PFA performance

Modern MC models agree with data within ~10%

Mean pion shower radius measurements in Si/W ECAL

Most models underestimate mean radius. FTF (v4.9.3) fits data best
Longitudinal shower profiles

Logitudinal shower profile from HCAL front and from found first interaction point for 30-GeV π^+ in high-granular hadronic calorimeter.

Data-MC comparison of pion shower longitudinal profiles.

Distributions of found first interaction point for 30-GeV pions and protons.

![Graphs showing energy density per layer versus depth for pions and protons](image)
Longitudinal shower profiles in Si/W ECAL

Sensitive to particle composition of showers

All models have problems in reproducing longitudinal profile
Multiplicity of tracks in hadronic showers

Identify MIP-like track segments in event

Such delicate variables are not well described by MC

MIP-like tracks identified in shower can be used for calibration
Time structure of hadronic showers in W-Scintillator HCAL

CLIC detector needs thicker HCAL: Fe \rightarrow W
Limited knowledge of hadronic showers in W \rightarrow Test W/Sc calorimeter at CERN

Time stamping important for CLIC in order to reduce background
Need to know the time structure of hadronic showers

Special timing layer of 3x3 cm2 scintillator tiles (T3B) placed after WHCAL at CERN tests

Fit response to a sum of single photon signals

Determine Time of First Hit - min 8 p.e. (~0.4 MIP) within 9.6 ns

Time resolution for muons ~ 800 ps including trigger
Time of First Hit in central T3B cell

QGSP_BERT
(LHC standard used for CLIC detector studies)
shows a pronounced tail
of late energy deposits

Data agrees better with
QGSP_BERT_HP
(variant with high precision neutron tracking)

Mean Time of First Hit
calculated in 200 ns window
(-10ns to 190ns from maximum in tile 0)

Data described consistently by
QGSP_BERT_HP

QGSP_BERT overshoots strongly
The separation of charged and neutral clusters, crucial for PFA performance, was studied with test beam data.

Two test beam showers were superimposed.

Results of disentangling by PandoraPFA was confronted with MC.

For comparison, the most sensitive characteristic was chosen - difference between the recovered and measured energy of the “neutral” shower.

Two different MC physics models were studied for comparison.
The results of shower disentangling for data and MC are in a good agreement for both the **probability of correct reconstruction** and for the **confusion error**

- No hidden imperfections in the real data *(wrong calibration, saturation correction, response non uniformity, dead or noisy channels, etc.)* which could deteriorate the PFA performance were found
- The agreement between data and MC makes reliable the detector optimization based on simulation.

Pandora PFA passed the exam with REAL DATA from REAL CALORIMETERS
Software Compensation

- π/e response ~ 0.8 → increased fluctuations
- e/m parts of shower usually denser
- Use software weighting to decrease fluctuations

Several methods (global, local, neural networks) tuned with data have been used. All give similar improvement ~15-20% in energy resolution for 10-80 GeV energy range.

Linearity is within ±1.5%

GEANT4 reproduces results well but not perfect.
Leakage correction

Leakage strongly correlated with shower starting layer and energy in last 5 layers

AHCAL high granularity allows corrections for leakage

Considerable improvement in linearity and resolution is expected
CONCLUSIONS

First generation of prototypes demonstrated a feasibility of highly granular calorimeters for PFA at LC

High granularity data allow very detailed studies of hadronic showers and tuning of MC models

MC models describe lateral and longitudinal shower profiles with 10-20% accuracy. Deviations are larger for more delicate variables like number of track segments

Shower time development critical for background reduction at CLIC was measured in W/Scintillator calorimeter and will be used for detector optimization

The most critical part of PFA – neutral particle reconstruction in vicinity of another hadronic shower was successfully tested using real data (noisy and dead channels, nonuniformity, calibration errors and nonlinearity, etc. – all taken into account)

High granularity allows to correct for e/π ratio with ~ 15-20% improvement in resolution

High granularity allows to correct for leakage. Considerable improvement is expected in linearity and resolution
Back up slides
Multiplicity of tracks in hadronic showers

Identify MIP-like track segments in event

Such delicate variables are not well described by MC

MIP-like tracks identified in shower can be used for calibration

Track multiplicity

Mean track multiplicity