Nuclear corrections in vA DIS & Compatibility with global NPDF analyses

Ji-Young Yu LPSC Grenoble

Collaborators:K.Kovarik,I.Schienbein, F.Olness,J.Owens,J.Morfin, C.Keppel,T.Stavreva

> EPS-HEP2011 Grenoble, 20-27 July

I. Nuclear corrections in vA DIS

PRD77(2008)054013

Why neutrino DIS?

- Data interesting for global analyses of proton PDF and nuclear PDF (nPDF)
 - Flavor separation:

Neutrino structure functions depend on different combinations of PDFs

• Dimuon production:

- Main source of information on the strange sea
- Large uncertainty on s(x,Q²) has significant influence on the W and Z benchmark processes at LHC
- For proton PDF: need nuclear corrections!

Why neutrino DIS?

• LBL precision neutrino experiments:

Need good understanding of v-A cross sections (A=Oxygen, Carbon)

• EW precision measurements:

Paschos-Wolfenstein analysis: extraction of $\sin^2 \theta_w$

Nuclear corrections: Historically

- Historically, nuclear corrections from charged-lepton DIS data are applied to neutrino DIS data
- Same correction for all scales Q²
- Same correction for all observables (F₂, F₃, cross section, dimuon production)
- Idea: study nuclear corrections in the parton model (PM) using nuclear PDF

Nuclear correction factors in the PM

- Be O an **observable** calculable in the parton model
 - Define nuclear correction factor:

$$R[\mathcal{O}] = rac{O[ext{nuc.PDF}]}{O[ext{freePDF}]}$$

- Compare below: $\mathbf{R}[\mathbf{F}_{2}^{IA}]$ (IA DIS) with $\mathbf{R}[\mathbf{F}_{2}^{VA}]$ (vA DIS)
- Advantage:
 - very flexible (applicable to other observables: F_3 , $d\sigma$, ...)
 - scale dependent

Iron PDFs from NuTeV data

- NuTeV cross section data
 - more than 1000 neutrino cross section data
 - more than 1000 anti-neutrino cross section data
 - correlated errors, radiative corrections, with and w/ o/ isoscalar corrections
- NuTeV/CCFR dimuon data (172 pts) to fix s(x) PDF
- Idea: Analyse iron data only (iron neutrino data)
 - Advantage: no A-dependence needs to be modeled
 - Only 2 Observables: not all PDFs constrained Need to be careful.

Iron PDFs from NuTeV data

• Assumptions

- Gluon PDF not constrained: Fix gluon to free proton gluon (supported by result of DS'04)
- Assume corrections to dbar similar to corrections to ubar at moderate and small x
- 'Perform regression analysis' where only one parameter is left free at a time
- Band of fits with similar χ^2/dof

Nuclear correction factors for **F**^{vFe}

- Nuclear correction factor (yellow band) surprisingly different from expectations based on IA DIS
- Are nuclear corrections in IA DIS and vA DIS different?
- Need global analysis of **IA DIS + DY +** vA **DIS** data for definite conclusions!

II. CTEQ nuclear PDF

PRD80(2009)094004

<u>nPDFs available at:</u>

http://projects.hepforge.org/ncteq/

nCTEQ framework

Framework as CTEQ6.1 + A-dependent fit parameters:

x-dependence of our input distributions always the same:

$$\begin{array}{rcl} x\,f_k(x,Q_0) &=& c_0 x^{c_1}(1-x)^{c_2} e^{c_3 x}(1+e^{c_4}x)^{c_5}\\ k &=& u_{\nu}, d_{\nu}, g, \bar{u}+\bar{d}, s, \bar{s},\\ \bar{d}(x,Q_0)/\bar{u}(x,Q_0) &=& c_0 x^{c_1}(1-x)^{c_2}+(1+c_3x)(1-x)^{c_4} \end{array}$$

Introduce A-dependent fit parameters:

$$c_k \rightarrow c_k(A) \equiv c_{k,0} + c_{k,1}(1 - A^{-c_{k,2}}), \quad k = 1, \dots, 5$$

- Note: In the limit $A \to 1$ we have $c_k(A) \to c_{k,0}$
- Ck,0 are the coefficients of the free proton PDF

nPDFs from IA DIS + DY data

- Global analyses of nPDF:
 - HKN'07 [PRC76(2007)065207]
 LO,NLO,error PDFs, χ²/dof = 1.2
 - **EPS'09** [JHEP0904(2009)065] LO,NLO,error PDFs, χ^2 /dof = 0.8
 - **DS'04** [PRD69(2004)074028] first NLO analysis, 'semi-global', no error PDFs, χ^2 /dof = 0.76

• Based on IA DIS+DY data

(EPS'09 uses also inclusive π^0 data at midrap. from d+Au and p+p coll. at RHIC)

 nCTEQ use same data sets as HKN'07 (up to cuts)

	R	Nucleus	Experiment	EPS09	HKN07	DS04
		D/p	NMC		0	
		4He	SLAC E139	0	0	0
	A/D		NMC95	0 (5)	0	0
		Li	NMC95	0	0	
		Be	SLAC E139	0	0	0
		С	EMC-88, 90		0	
			NMC 95	0	0	0
			SLAC E139	0	0	0
			FNAL-E665		0	
		N	BCDMS 85		0	
			HERMES 03		0	
		AI	SLAC E49		0	
			SLAC E139	0	0	0
		Ca	EMC 90	-	Ō	-
			NMC 95	0	õ	0
			SLAC F139	ŏ	õ	ŏ
			ENAL-E665		õ	
		Fe	SLAC E87		Ő	
			SLAC E130	0 (15)	ő	0
DIS			SLAC E140	0(10)	0	
			BCDMS 87		õ	
		Cu	EMC 93	0	ő	
		Kr.	LEDMES 03		õ	
		A.a.	SLAC E120	0	0	0
		<u></u>	EMC 00	U U	0	0
		on	SLAC E120	0	0	0
		Au	SLAC E140	0	0	0
		Dh	SLAG E140		0	
	-	PD Do	NMO 06	0	0	0
	A/C A/Li	De Al	NMC 96	0	0	0
		AI Ca	NMC 05	0	0	0
			NIVIC 95	0	0	0
			NIVIC 96	0	0	0
		Fe	NIVIC 90	0 (10)	0	0
		Sn	NMC 90	0(10)	0	0
		Pb	NMC 96	0	0	0
		U C	NMC 95	0	0	
-		Ca	NMC 95	0	0	-
	A/D	<u> </u>	-	0	0	0
		Ca	FNAL-E772	0 (15)	0	0
DY		Fe		0 (15)	0	0
		W		0 (10)	0	0
	A/Be	Fe	ENAL E866	0	0	
	10.00	W HALL LOOD		0	0	
π pro	dA/pp	Au	RHIC-PHENIX	O (20)		

Table from Hirai et al, arXiv:0909.2329

Some results

PRD80(2009)

- 708 (1233) data points after (before) cuts
- 32 free paramters; 675 d.o.f.
- overall $\chi^2 / dof = 0.95$
- individually:
 - for $F_2^A / F_2^D : \chi^2 / pt = 0.92$
 - for $F_2^A / F_2^{A'} : \chi^2 / pt = 0.69$
 - for DY: $\chi^2 / pt = 1.08$
- Our nCTEQ formalism works!

III. Analysis of IA+DY + vA data

PRL106(2011)122301

Include neutrino data

Correlated errors!

Radiative correct.

with and w/o isoscalar corrections

	$\mathrm{d}\sigma^{ u\mathbf{A}}/\mathrm{d}\mathbf{x}\mathrm{d}\mathbf{y}:$						
ID	Observable	Experiment	# data				
33	Pb	CHORUS ν	607 (412)				
34	Pb	CHORUS $\bar{\nu}$	607~(412)				
35	Fe	NuTeV ν	1423 (1170)				
36	Fe	NuTeV $\bar{\nu}$	1195 (966)				
37	Fe	$\mathrm{CCFR}\; \nu \operatorname{di-muon}$	44 (44)				
38	Fe	NuTeV $ u$ di-muon	44 (44)				
39	Fe	CCFR $\bar{\nu}$ di-muon	44 (44)				
40	Fe	NuTeV $\bar{\nu}$ di-muon	42 (42)				
	Total:		4006 (3134)				
	·						

strange PDF

Fits to IA + DY + vA data

PRL106(2011)122301

- IA and DY data set as before
- Many neutrino data points
- Use a weight parameter w to combine data sets:

w=0: only IA+DY data \rightarrow describes IA+DY data w= ∞ : only vA data \rightarrow describes neutrino data

Nuclear correction factors

Weight	ℓ data	$\chi^2 (/\mathrm{pt})$	ν data	$\chi^2 (/\text{pt})$	total χ^2 (/pt)
w=0	708	639(0.90)	-	-	639 (0.90)
w = 1/7	708	645 (0.91)	3134	4710(1.50)	5355(1.39)
w = 1/4	708	654 (0.92)	3134	4501(1.43)	5155(1.34)
w = 1/2	708	680 (0.96)	3134	4405(1.40)	5085(1.32)
w = 1	708	736(1.04)	3134	4277(1.36)	5014(1.30)
$w = \infty$	-	-	3134	4192(1.33)	4192(1.33)

No good compromise fit describing IA+DY and vA data!

Discussion

- Nuclear correction factors: there is no good compromise fit to the combined IA+DY+vA data
- Same conclusion based on a tolerance criterion.
 See PRL106(2011)122301 for details
- Incompability is a "precision effect": the result changes when using uncorrelated errors
- The incompability could be due to:
 - factorization breaking (at twist-2 level)
 - nuclear enhanced higher twist terms

Conclusions

- Nuclear correction factors in νA and IA DIS different
- Global nCTEQ fits able to describe IA+DY data well:
 - see http://projects.hepforge.org/ncteq/
- There is **no** good compromise fit to the combined $IA+DY+\nu A$ data
- Important consequences for
 - global analyses of proton and nuclear PDF
 - models explaining the nuclear effects
 - precision observables in the neutrino sector