

Transverse momentum spectra of identified charged hadrons with the ALICE detector in Pb-Pb collisions at the LHC

Roberto Preghenella for the ALICE Collaboration

Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Roma INFN, Sezione di Bologna

International Europhysics Conference on High Energy Physics – HEP 2011 Grenoble, Rhône-Alpes France, July 21 2011

The ALICE experiment at LHC

designed to cope with very high charged-particle multiplicity $dN_{ch}/d\eta \leq 8000$

3D tracking with many points

moderate B = 0.5 T thin materials for low- p_{τ} particles

uses all known PID techniques *dE/dx*, TOF, transition radiation, Cherenkov radiation, calorimetry, muon filters, topological decay

The ALICE detector: central barrel

Inner Tracking System (ITS) \rightarrow dE/dx

Time-Projection Chamber (TPC) → dE/dx

Roberto Preghenella

Time-Of-Flight detector (TOF)

radius	~370 cm
polar acceptance	η < 0.9
azimuthal acceptance	full
coverage area	~140 m²
detecting element	double-stack MRPC
MRPC efficiency	> 99 % (test beam)
MRPC time resolution	< 50 ps (test beam)
readout segmentation	2.5 x 3.5 cm ²
readout channels	157248

PID via *time-of-flight* technique ($\sigma \sim 85 \text{ ps}$) <u>performance better than</u> <u>design</u> ($\sigma < 100 \text{ ps}$)

Time-Of-Flight detector (TOF)

radius	~370 cm
polar acceptance	η < 0.9
azimuthal acceptance	full
coverage area	~140 m²
detecting element	double-stack MRPC
MRPC efficiency	> 99 % (test beam)
MRPC time resolution	< 50 ps (test beam)
readout segmentation	2.5 x 3.5 cm ²
readout channels	157248

expected separation (n σ) . Pb-Pb (0-10%) |y| < 0.5 Performance 15/05/2011 3.5 3 2.5 2 1.5 π/K separation 1 K/p separation 0.5 0 2.5 4.5 5 p_T (GeV/c) 0.5 1 1.5 2 3 3.5

excellent PID separation over wide momentum range: $3\sigma \pi/K$ up to ~2.5 GeV/c $3\sigma K/p$ up to ~4.0 GeV/c

Charged-hadron spectra (negative)

Roberto Preghenella

ALICE protons \rightarrow feed-down corrected

8

p, (GeV/c)

 $\sigma_{stat}^2 + \sigma_{syst}^2$

р_т (GeV/c)

2.5

Charged-hadron spectra (negative)

Charged-hadron spectra (negative)

Particle-antiparticle production

positive spectra are very similar to negative ones positive spectra in backup slides

very similar particle and antiparticle production as expected at the LHC only negative particles shown in the following slides

Average hadron momenta (negative)

mean p_T increases linearly with mass mean p_T increases with $dN_d/d\eta$ (i.e. collision centrality) mean p_T higher than at RHIC for similar $dN_d/d\eta$ \rightarrow harder spectra, stronger radial flow?

Blast-Wave global fit to π/K/p

13

Particle-antiparticle production ratios

as expected at LHC energies, particle-antiparticle ratios are all compatible with 1 at all centralities

 $\mu_{\rm R}$ is close to zero at the LHC

Roberto Preghenella

STAR, PRC 79, 034909 (2009)

14

K/π and *p/π* production ratios

	ALICE data these results	LHC prediction* T _{ch} = 164 MeV, µ _B =1 MeV A.Andronic et al, Phys.Lett.B 673, 142 (2009)	LHC prediction* T _{ch} = (170 ± 5) MeV, μ _B = (1 ± 4) MeV <u>J.Cleymans et al, PRC 74, 034903 (2006)</u>
<i>K</i> ⁺ / <i>π</i> ⁺	0.156 ± 0.012	0.164	0.180 ± 0.001
<i>K⁻/π</i> ⁻	0.154 ± 0.012	0.163	0.179 ± 0.001
<i>p/π</i> ⁺	0.0454 ± 0.0036	0.072	0.091 ± 0.009
<i>p/π</i> -	0.0458 ± 0.0036	0.071	0.091 ± 0.009
		*	

prediction for central Pb-Pb collisions at $\sqrt{s_{_{N}}}$ = 5.5 TeV

Conclusions

ALICE has measured transverse momentum spectra of identified charged hadrons in Pb-Pb collisions as a function of collision centrality

Spectral shapes and average momenta seem to indicate a stronger radial flow that at RHIC (β) ~10% higher

Particle-antiparticle production ratios consistent with 1 μ_{R} is close to zero at the LHC

Integrated K/π and p/π production ratios similar to RHIC (when proton feed-down is taken into account)

 $p/\pi \sim 0.05$ difficult to understand in thermal-model predictions with T_{ch} = 160-170 MeV

Centrality selection and measurement

Raw yield measurement (TOF)

Feed-down corrected primary protons

Comparison of PID analyses

Charged-hadron spectra (positive)

Roberto Preghenella

ALICE protons → feed-down corrected

22

Charged-hadron spectra (positive)

Charged-hadron spectra (positive)

Comparison to hydro-prediction

negative particles - 0-5% most central

ALICE protons \rightarrow feed-down corrected

Roberto Preghenella

25

High-p₋ charged pion comparison

high-p_{_} analysis (<u>TPC relativistic rise</u>): nice continuation of low-p_{_} (<u>ITS+TPC+TOF</u>)

Charged/neutral kaon comparison

Comparison between proton and Λ

Lambda very similar to proton in shape and yield protons feed-down corrected for weak-decay lambdas feed-down corrected for Ξ decay

this was very similar at RHIC, when comparing feed-down corrected spectra

Roberto Preghenella

STAR, PRL 98, 062301 (2007) PHENIX, PRC 69, 03409 (2004)

Blast-Wave model

<u>hydrodynamics-inspired model</u>: assume a hard-sphere uniform density particle source with a temperature T and collective transverse radial flow velocity β

 \rightarrow spectrum from thermal sources boosted in the transverse direction

 $\beta_{r}(r)$ describes the transverse velocity distribution in the region $0 \le r \le R$, parametrized by

- $\beta_s \rightarrow \underline{surface \ velocity}$
- *n* → <u>velocity profile</u>

$$\beta_r(r) = \beta_s \left(\frac{r}{R}\right)^n$$

the <u>resulting spectrum</u> is a superposition of the individual thermal components, each boosted with the boost angle ρ

$$\rho = \tanh^{-1} \beta_r$$

that is $(I_{o} \text{ and } K_{f} \text{ are modified Bessel functions})$

$$\frac{dn}{m_T \, dm_T} \propto \int_0^R r \, dr \, m_T I_0 \Big(\frac{p_T \sinh \rho}{T}\Big) K_1 \Big(\frac{m_T \cosh \rho}{T}\Big)$$

Roberto Preghenella

Schnedermann et al, PRC 48, 2462 (1993) **29**