

Measurement of J/ ψ and ψ (2S) production at \sqrt{s} =7 TeV with the CMS experiment

Fabrizio Palla INFN - Pisa

(on behalf of the CMS Collaboration)

EPS 2011 Grenoble

Motivations

2

Production of charmonium states provides a test of QCD

- Production mechanism with a preponderance of color octet over color singlet contributions seems to work for Tevatron and first LHC data. Important to test the high p_T region.
 - The J/ ψ prompt yield has a large fraction of feed-down contributions from $\psi(2S)$ and χ_c decays. High p_T region up to now tested by ATLAS.
 - $\psi(2S)$ has no "indirect" contribution from heavier charmonia. Up to now, only LHCb measurements at LHC, which cover the region 2<y≤4.5.
 - Measuring the $\psi(2S)$ to J/ ψ ratio most of the experimental uncertainties cancel.

F. Palla - INFN Pisa

 $J/\psi \text{ and } \psi(2S) \text{ reconstruction mainly exploits} \\ Muon detectors for high purity muon identification and trigger \\ Silicon Tracker detector for long lifetime and good di-muon mass resolution \\ \end{tabular}$

F. Palla - INFN Pisa

The LHC accelerator

CMS integrated around 43 pb⁻¹ by the end of the 2010 pp run with an overall data taking efficiency better than 90%. Analysis is based on 36.7 pb⁻¹.

Europhysics Conference on High Energy Physics 2011 Grenoble, 20-27 July 2011 4

Double Muon Triggers

Trigger requirements changing with increasing luminosity:

QL1 requirements at the startup had no p_T threshold (not prescaled until 10³¹ Hz cm⁻²)

allows to go down to zero quarkonium p_T in the forward region - used for the first CMS paper based on 314 nb⁻¹

At higher luminosities, smart strategies adopted for quarkonia (combination of L1 and HLT muons, or HLT muon and track in specific invariant mass regions... etc.)

effective p_T thresholds were ~3 GeV

- "veto cone" at Level-I (to reduce the rate from single muons faking two signal µ) induces correlations.
- Offline rejection for "cowboy" like dimuons in the forward

F. Palla - INFN Pisa

Cross section in a nutshell

$$\frac{d^{2}\sigma}{dp_{T}dy}(\psi) \times BR(\psi \rightarrow \mu\mu) = \frac{N_{fit}(\psi) \left\langle \frac{1}{A \cdot \varepsilon} \right\rangle}{\int L dt \cdot \Delta p_{T} \cdot \Delta y}$$

- **N**_{fit} = signal yield from fit to dimuon invariant mass distributions
- **JLdt = integrated luminosity (4% uncertainty)**
- A = geometrical and kinematical acceptance
 - strongly dependent on production polarization, mostly dictated by the thresholds on efficiency triggers

$$|\eta^{\mu}| < 1.2 \rightarrow p_{\rm T}^{\mu} > 4 \text{ GeV/}c$$

 $1.2 < |\eta^{\mu}| < 2.4 \rightarrow p_{\rm T}^{\mu} > 3.3 \text{ GeV/}c$

- **ε** = dimuon efficiency= $\epsilon(\mu^+) \cdot \epsilon(\mu^-) \cdot \rho \cdot \epsilon_{vertex}$
 - single muon trigger and reconstruction efficiencies, from Tag & Probe method
 - Vertexing of opposite sign dimuons (Prob>1%)
 - High quality tracks associated to muon segments: cuts on n_{Hits}, χ², d_{xy}, d_z

J/ψ and $\psi(2S)$ yields

Yield extraction:UML fit to invariant mass distributions

- J/ψ in five rapidity bins ~200K events
 - Crystal Ball+ Gaussian + exponential bkg
- + $\psi(2S)$ in three rapidity bins ~8K events
 - Simultaneous fit to ψ and J/ ψ + 2 exp bkg
 - CB tail parameters and resolution (scaled by mass) in common
 - mass mean difference fixed from PDG
- Mass resolution ~20 MeV for |y|<0.5, ~50 MeV |y|>2.1

Inclusive J/ ψ cross section

Fit technique

- Core resolution function given by one Gaussian (plus <1% of a second Gaussian) using "per event error"
- In the ψ(2S) case, a simultaneous fit is performed together with the J/ψ, using some constraints (same resolution and mean, same effective background lifetimes)

F. Palla - INFN Pisa

Europhysics Conference on High Energy Physics 2011 Grenoble, 20-27 July 2011

-0.5

0.5

0

1.5

2

l_{ψ(2S)} (mm)

B fraction results

F. Palla - INFN Pisa

Europhysics Conference on High Energy Physics 2011 Grenoble, 20-27 July 2011

10

NRQCD predictions in excellent agreement (include feed-down for J/ψ) (K.T. Chao et al.) [Phys. Rev. Lett.106:042002, 2011]

J/ψ [ψ(2S)] polarization uncertainties as in *Eur. Phys. J.* C71 (2011) 1575: +18% [+25%] (fully transverse in helicity frame)

-20% [-28%] (fully longitudinal helicity frame)

F. Palla - INFN Pisa

Non-prompt cross-sections

Excellent comparison with FONLL predictions for J/ψ (M. Cacciari et al.) [JHEP 0103 (2001) 006]

Largest systematics from ρ -factors (for the J/ ψ) and background lifetime (for ψ (2S)).

- Overall shift for predictions for $\psi(2S)$
- $\psi(2S)$ spectrum falls more rapidly at high p_T than the predictions

```
F. Palla - INFN Pisa
```


Ratio of the differential cross sections is appealing since most of the systematic uncertainties cancel

$$R(p_{\mathrm{T}},|y|) = \frac{\frac{d^2\sigma}{dp_{\mathrm{T}}dy}(\psi(2S)) \cdot \mathrm{BR}(\psi(2S) \to \mu^+ \mu^-)}{\frac{d^2\sigma}{dp_{\mathrm{T}}dy}(J/\psi) \cdot \mathrm{BR}(J/\psi \to \mu^+ \mu^-)} = \frac{N_{\mathrm{corr}}(\psi(2S))}{N_{\mathrm{corr}}(J/\psi)}.$$

- Ratio is constant over rapidity bins, hence the result is given averaged within |y|<2.4.
- Statistical errors ~3 to 5%, systematic uncertainty ~10% (acceptance dominated) - except polarization
- The polarization uncertainty on R ranges from 12% to 20%

Conclusions

- Absolute differential cross-sections in p_T and |y| of J/ψ and $\psi(2S)$ mesons and ratio of the cross sections
 - All separately for prompt and non-prompt contributions
- Measurement of J/ψ cross section from 0 to 70 GeV/c
- Typical uncertainties (statistical + systematic)
 - ~5 (20)% on J/ψ (ψ(2S)) x-sections, ~10% on ratios
 - Maximum polarization uncertainties for the prompt cross sections range from ~18% (for J / ψ) to 28% (for ψ (2S))
- Results compared with NRQCD and FONLL predictions
 - + Excellent agreement for prompt case J/ ψ and $\psi(2S),$ as well as for non-prompt J/ $\psi.$
 - Overall ψ(2S) normalization (and spectrum at very high p_T) show differences with respect to the non-prompt predictions

Backup

J/ψ Systematics

	-	-				
y range		0 - 0.9	0.9 - 1.2	1.2 - 1.6	1.6 - 2.1	2.1 - 2.4
Quantity	Source	Relative uncertainty (in %)				
affected						
$m_{\mu\mu}$ fits	Statistical	1.2 - 8.9	1.5 - 7.1	1.6 - 8.4	1.2 - 3.2	2.3 - 3.9
$\ell_{J/\psi}$ fits	Statistical	1.0 - 5.9	1.4 - 4.7	1.4 - 7.6	2.1 - 8.3	4.4 - 7.1
Acceptance	FSR	0.0 - 1.5	0.0 - 2.5	0.0 - 4.2	0.7 - 8.0	0.5 - 3.5
-	p_T calibration	0.0 - 0.6	0.0 - 0.6	0.0 - 0.8	0.1 - 0.6	0.0 - 0.8
	Kinematical spectra	0.0 - 0.3	0.0 - 0.7	0.0 - 0.7	0.7 - 3.8	0.4 - 5.3
	B polarization	0.0 - 0.5	0.0 - 0.4	0.0 - 0.5	0.1 - 0.8	0.3 - 1.3
Efficiency	Single-muon efficiency	0.3 - 0.9	0.2 - 1.6	0.1 - 1.4	0.2 - 1.0	0.6 - 1.4
-	ρ factor	1.9 - 23.2	1.2 - 7.6	0.7 - 5.7	0.8 - 5.4	3.7 - 6.8
Yields	Fit functions	0.6 - 3.4	0.4 - 2.8	0.5 - 2.8	0.8 - 2.2	1.0 - 4.2
Luminosity	Luminosity	4	4	4	4	4
b-fraction	Tracker misalignment	0.1 - 2.1	0.1 - 0.8	0.0 - 1.5	0.2 - 3.2	0.2 - 5.1
	b-lifetime model	0.1 - 3.0	0.1 - 3.4	0.1 - 3.7	0.2 - 2.6	0.2 - 6.6
	Vertex estimation	0.1 - 0.7	0.7 - 3.0	0.4 - 3.7	1.5 - 4.6	2.3 - 5.0
	Background fit	0.0 - 0.2	0.1 - 1.4	0.1 - 1.0	0.0 - 2.5	0.1 - 1.2
	Resolution model	0.2 - 3.5	0.0 - 4.2	0.8 - 3.5	1.1 - 5.0	1.1 - 4.4
	Efficiency	0.4 - 2.1	0.9 - 3.3	0.5 - 9.9	0.3 - 3.3	1.6 - 10.5
		\sim		\sim		7

F. Palla - INFN Pisa

Europhysics Conference on High Energy Physics 2011 Grenoble, 20-27 July 2011

Friday, July 22, 2011

ψ (2S) systematics

y range		0 - 1.2	1.2 - 1.6	1.6 - 2.4
Quantity Source		Relative uncertainty (in %)		
affected			-	
$m_{\mu\mu}$ fits	Statistical	5.6 - 14.8	7.5 - 31.7	7.3 - 24.1
$\ell_{\psi(2S)}$ fits	Statistical	4.3 - 12.7	5.9 - 38.0	9.1 - 26.4
Acceptance	FSR	0.0 - 3.9	0.5 - 3.4	0.3 - 4.1
_	p_T calibration	0.2 - 0.5	0.3 - 0.5	0.3 - 0.5
	Kinematical spectra	0.1 - 1.2	0.0 - 0.9	0.7 - 2.0
	B polarization	0.1 - 0.8	0.0 - 0.6	0.2 - 1.7
Efficiency	Single-muon efficiency	0.1 - 0.5	0.1 - 0.6	0.2 - 0.9
-	ρ factor	0.7 - 13.1	2.1 - 6.6	2.3 - 9.8
Yields	Fit functions	1.2 - 3.7	0.6 - 12.1	3.1 – 10.0
Luminosity	Luminosity	4	4	4
b-fraction	Tracker misalignment	0.3 - 2.6	1.5 - 7.1	1.8 - 11.1
	b-lifetime model	0.0 - 2.5	0.4 - 7.6	0.0 - 2.9
	Vertex estimation	0.0 – 1.7	0.2 - 3.5	1.2 – 4.2
	Background fit	1.0 - 6.8	2.2 - 10.0	2.5 - 15.3
	Resolution model	0.5 – 3.5	0.1 - 4.6	0.9 – 24.9
	Efficiency	0.5 - 7.8	0.9 - 6.3	0.5 - 13.8

F. Palla - INFN Pisa

Systematics on B-fraction

- Tracker misalignment: data re-reconstructed in 3 "weak-mode" alignment scenarios and taking the maximum deviation as systematics
- B-lifetime model: "MC template" method used as alternative nonprompt PDF model
- Background fit: varying mass limits for the sideband fit which determines I_{qq} background parameters
- Pile-up: different choice criteria in case of multiple PVs
- Resolution model: double Gaussian → single Gaussian
- Different prompt/non-prompt efficiencies: evaluated from MC

Systematics from polarization in the cross section ratio

- The polarization uncertainty is lower wrt crosssections (see P. Faccioli talk at Quarkonium Production Workshop 2011, Vienna), but dominant
 - The polarization of the J/ ψ from ψ (2S) decays practically coincides.
 - The only difference comes from the polarization of the ~30% feeddown P-wave states (χ_{c1} and χ_{c2}), which is constrained by theory.

- Mass fits systematics:
 - changing
 - Crystal Ball + Gaussian to a single Crystal Ball
 - Exponential to a linear
 - and taking the maximum variation per bin

Acceptance Systematics :

- To estimate effect of the FSR MC model (PHOTOS) generate events w/ and w/ o FSR and compare
- pT calibration: muon momenta are smeared according to the uncertainties of the momentum scale corrections
- Kinematical distributions: alternative pT spectra used to average inside a small bin
- Non-prompt polarization: difference between partially measured value (Babar) and EvtGen predictions

Published J/ψ cross section

Comparison with theory

30

Muon identification

MUON SYSTEM

Tracker muon (inside-out):

Tracker track (pt>0.5 GeV,p>2.5 GeV) is extrapolated to the muon system (taking into account energy loss, MS uncertainty) at least one muon segment matches track in position. *Fake muon level high*

Higher efficiency low momentum muon

F. Palla - INFN Pisa

Tracker performance well understood

- Performance in agreement with the simulation
- Excellent level of detector alignment

	Data 7 TeV	MC startup	MC no
DMR			misalignment
	RMS [µm]	RMS [µm]	RMS [µm]
BPIX (u')	1.6	3.1	0.9
BPIX (v')	5.5	8.9	1.8
FPIX (u')	5.7	10.7	2.5
FPIX (v')	7.3	14.4	6.1
TIB (<i>u</i> ′)	5.1	10.1	3.2
TOB (u')	7.5	11.1	7.5
TID (u')	4.0	10.4	2.4
TEC (u')	10.1	22.1	2.9

F. Palla - INFN Pisa

[CMS PAS TRK-10-001]

Europhysics Conference on High Energy Physics 2011 Grenoble, 20-27 July 2011

Friday, July 22, 2011

The NRQCD theoretical errors include uncertainties on feed-down contributions and on the color-octet long distance matrix elements determined from fits to the Tevatron data.

- The FONLL theoretical errors include renormalization and factorization scale, b and c quark mass, and PDF uncertainties.
 - In the non-prompt $\psi(2S)$ theory predictions figures, a 50% error from the PDG value of the BR(B $\rightarrow\psi(2S)X$), has been included.