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a trivial remark

experimental data on jefs is crucial to unveil details
of the QCD dynamics underlying jet quenching

BUT...

role of jets as powerful detailed probes of medium properties will only
come fo full fruition once dynamics is under full theoretical control
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most information on jet quenching NOT from jets

centrality dependent suppression of leading hadron spectra + unsupressed

photons

Au+Au - 200 GeV (central collisions):
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suppression of back-to-back di-hadrons in AuAu but not in dAu
correlated back-to-back photon-hadron emission

background subtraction for calorimetric jet measurements very challenging at
RHIC

The medium created in HIC is very opaque to energetic partons traversing it
[no strict constraints on underlying dynamics]
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but that is not ALL [Dr Seuss, The Cat in the Hat] ...
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/

ic |efs...
GeV

tri

Jet 0, pt: 141.7.

23:11:44 2010 CEST..jp

Datarécorded: Tue Nov
/| Run/Event: 150590./-33654

Lumi se:_:__tign:- 80

better proxy for original parton

e
R e

P CMS Experimsit at LHC, CERN ™

fully reconstructed calorime

jet quenching [1 a. LHC]

169045
1914004

2010

un:

12

-11

Event:
Date:

imeter

Calor

IoNns can

Time: 04:11:44 CET

A p
St
e

1101.2878] that background fluctuat

N

D

>~

o

(T o)

=

=

)

(&g )]

.”’

=

‘o

=2

=

I

el

O

Q

N

O

| O

<
=

3 —

™ ()

2

b O

- o
5]
L=

jet identification above large and fluctuating background performed on systematic

basis

ficantly affect measurements

signi

extensive tests carried out by ATLAS, CMS and ALICE
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the big question

Does available LHC data imply qualitative rethinking/development of
fundamental ingredients of ‘Jet Quenching’ ?



Jet energy loss via Jet collimation

arXiv:1012.0745 + arXiv:1107.1964

[with Jorge Casalderrey-Solana and Urs Wiedemann]



measurement of di-jet asymmetry
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measurement of di-jet asymmetry

Er1 — E7o

Ay

Eto<Erq

- s ETq

»

- Ep + Epy

12 fm

:for the purpose of this talk::

imbalance of jet energy within a cone of radius R for

A ‘back-to-back’ di-jets
int. luminosity - Eri™n [GeV] | Erx™" [GeV] | Ad™n
[ub] [leading jet] | [recoiling jet]
\ ATLAS 1.7 0.4 100 25 /2 1011.6182, PRL (2010)
CMS 6.7 0.5 120 50 2m/3 1102.1957

observed asymmetry robust against background issues and CMS/ATLAS differences at [least at] the level of qualitative features
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asymmetry increases with centrality

[increased in-medium path length for recoiling jet]

very mild centrality dependence for azimuthal distribution and
essentially unchanged from pp

[minor medium-induced jet deflection]

focus on most central events [where the effect is maximal]
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ATLAS

clear suppression of more symmetric events [0 < A; < 0.2]
enhancement of events with A; = 0.4+0.5
sharp fall-off at large A not physical

very mild modification of the azimuthal angle distribution

requires medium induced transverse broadening with no deflection of jet



out-of-cone radiation [jet energy loss] in PbPb
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out-of-cone radiation [jet energy loss] in PbPb
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estimate energy loss
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from (DF vacuum jet shape studies
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out-of-cone radiation [jet energy loss] in PbPb
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estimate energy loss

. :overestimate::

. only fraction (1-o¢) interact [corona effect] from ratio at x=]

------------------------------------------------------------------------------------------



out-of-cone radiation [jet energy loss] in PbPb
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estimate energy loss

8.4 GeV < AFE < 18 GeV [CMS] 10 GeV < AFE < 21 GeV |ATLAS]
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underlying dynamics

underlying dynamics must be such that medium effects
LEAD
to significant out of cone radiation

WITHOUT
significant distortion of azimuthal distribution

increased large angle medium induced radiation

at given fixed angle

1

T~ — :: harder gluons are emitted earlier
wb

:: [semi-Jhard gluons deflect jet

sizeable out-of-cone radiation implies sizeable modification of azimuthal distribution
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underlying dynamics

-_ radiation of soft gluons at small angle

2 no sizeable effect on jet direction [see later]

transport of radiated gluons

all jet components accumulate an average transverse momentum [Brownian motion]
(k1) ~ /4L
in the presence of a medium soft modes are formed early

w ®
T~ oy —(T) ~ [ =
L)~ !

sufficiently soft modes are completely decorrelated from the jet direction

w < A/qL



jet collimation

the medium acts as a frequency collimator efficiently
trimming away the soft components of the jet




jet [frequency] collimation

energy carried by soft modes [that can be decorrelated] necessary to account

for observed energy loss from jet cone vac: MLLA
med: medium modified MLLA
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jet frequency collimation affects all soft modes in the jet ‘wave-function’
- mechanism effective even if there is no additional medium induced radiation/splittings
[transports vacuum soft gluons out of the jet cone]
:: softening of the spectrum [from medium induced radiation] enhances the effect



jet [frequency] collimation

energy carried by soft modes [that can be decorrelated] necessary to account

for observed energy loss from jet cone vac: MLLA
med: medium modified MLLA
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if jet collimation is the sole medium
effect [or with additional medium
induced softening], transport
coefficient needed to account for
asymmetry can be estimated from
earlier energy loss bounds
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jet [frequency] collimation

energy carried by soft modes [that can be decorrelated] necessary to account
for observed energy loss from jet cone
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if jet collimation is the sole medium
effect [or with additional medium
induced softening], transport
coefficient needed to account for
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earlier energy loss bounds
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(in .vs. out) of cone radiation

energy lost from cone via jet collimation is soft
[medium strongly enhances soft out-of-cone radiation]
soft modes can be transported to large angles

in given asymmetry class, jet collimation leaves hard modes unchanged
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effect on azimuthal distribution

smear transverse momentum corresponding to each angle [from reference
proton-proton distribution] pr = (Er,) sin(m — ®) with gaussian weight of
average squared momentum §¢L
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effect on azimuthal distribution

smear transverse momentum corresponding to each angle [from reference
proton-proton distribution] pr = (Er,) sin(m — ®) with gaussian weight of
average squared momentum §¢L
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for estimated values of gL jet collimation DOES NOT result in sizeable effect for azimuthal distribution



in-medium colour flow

arXiv:1107.1080 + in preparation

[with Andrea Beraudo and Urs Wiedemann]
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colour flow and hadronization

Raa models based factorization of parton energy loss and fragmentation

do AA—h+X ZdO_AA—>f+X (AE»AA R Df—>h( )

med vac vac

is this truly well motivated in QCD?

clearly, for large p:, hadronization occurs ouside the medium

P
Q5

formation time of hadronic scales 7form =

however, hadronization depends on colour flow in parton shower

if colour flow of leading partons is modified by the medium, then hadronization
can be modified EVEN IF it happens outside the medium

proof of principle calculation in large Nc and N=1 order in opacity



colour flow [vacuum]

colour flow in vacuum branching

Mx
@

-
>

(1—x)P*

p/
p P
> >

colour singlet cluster giving rise to leading hadron

2
+ _(1_% ) - M2 — ki
pcluster ( 9 ppafrton 1Nv 2517(1 . CC)



colour flow [in-medium]



colour flow [in-medium]

vacuum like
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colour flow [in-medium]

vacuum like
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colour flow [in-medium]

vacuum like
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medium modified clusters have less energy and larger invariant mass [higher splitting probability]
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effect on Raa

if usual colour averaged parton energy loss is effective than at least 1/2 of the
radiative contribution originates from clusters with medium modified colour flow

clusters of large invariant mass (> 4 GeV) decay [HERWIG]

C — XY

Qo Qo
py =(1- M—C)P;arton + M_Ct+

with general quenched partonic spectrum
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vacuum-like colour flow
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medium modified colour flow
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as an illustration
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as an illustration
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colour flow effects on hadronization persistent at 100 GeV ?
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