Exotics Searches in Jet Final States with the ATLAS Detector

Adam Gibson
University of Toronto
On behalf of the ATLAS Collaboration

EPS HEP 2011
July 21, 2011
Outline, Motivation

• Jet signatures probe the highest energies directly accessible at the LHC
• Test popular models like those with extra dimensions

• Model-independent, signature-based, searches for new physics
• Limits set on particular models including
 – Dijet resonances
 – Extra Dimensions, strong gravitational scenarios (ADD, black holes)
 – Compositeness models (e.g. excited quarks) and contact interactions
 – Model-independent limits

• Multi-jet searches (≥ 5 jets)
• Dijet searches (≥ 2 jets)
• Monojet searches (== 1 jet)
Outline, Motivation

- Jet signatures probe the highest energies directly accessible at the LHC
- Test popular models like those with extra dimensions

- Model-independent, signature-based, searches for new physics
- Limits set on particular models including
 - Dijet resonances
 - Extra Dimensions, strong gravitational scenarios (ADD, black holes)
 - Compositeness models (e.g. excited quarks) and contact interactions
 - Model-independent limits

- Multi-jet searches (≥ 5 jets)
- **Dijet searches (≥ 2 jets)**
- **Monojet searches ($\equiv 1$ jet)**

New results: Presented for the first time, today!
LHC and ATLAS Operations

- 2010: A solid start to physics operations
 - ATLAS papers with e.g. 36 pb\(^{-1}\)
- LHC has continued remarkable performance in 2011
- ATLAS subdetectors record good quality data
- ATLAS and LHC operations have already supported excellent physics in 2011
 - Brand new results with 0.81 and 1.0 fb\(^{-1}\)

Subdetector fraction of good data for 593 pb\(^{-1}\) recorded

<table>
<thead>
<tr>
<th>Inner Tracking Detectors</th>
<th>Calorimeters</th>
<th>Muon Detectors</th>
<th>Magnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>SCT</td>
<td>TRT</td>
<td>LAr EM</td>
</tr>
<tr>
<td>99.8</td>
<td>99.5</td>
<td>100</td>
<td>89.3</td>
</tr>
<tr>
<td>LAr</td>
<td>HAD</td>
<td>FWD</td>
<td>LAr</td>
</tr>
<tr>
<td>92.7</td>
<td>94.3</td>
<td>99.5</td>
<td>100</td>
</tr>
<tr>
<td>Tile</td>
<td>MDT</td>
<td>RPC</td>
<td>CSC</td>
</tr>
<tr>
<td>100</td>
<td>99.5</td>
<td>100</td>
<td>99.9</td>
</tr>
<tr>
<td>Muon Detectors</td>
<td>TGC</td>
<td></td>
<td>Solenoid</td>
</tr>
<tr>
<td>98.5</td>
<td></td>
<td></td>
<td>Toroid</td>
</tr>
<tr>
<td>Magnets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Luminosity weighted relative detector uptime and good quality data delivery during 2011 stable beams in pp collisions at \(\sqrt{s} = 7\) TeV between March 13th and June 6th (in %). The inefficiencies in the LAr calorimeter will partially be recovered in the future. The magnets were not operational for a 3-day period at the start of the data taking.

July 21, 2011

A. Gibson, Toronto
Very high energy jet event

\[m_{jj} = 4040 \text{ GeV} \]

\[p_T^{j_1} = 1850 \text{ GeV} \]

\[p_T^{j_2} = 1840 \text{ GeV} \]

ATLAS-CONF-2011-081
Search in Multi-Jet Final State: Black Holes?

- What if the Planck scale is approximately the same as the EW scale?
 - Large, flat, extra dimensions can allow it (ADD)
 - Gravity can become strong at the TeV scale, perhaps we’ll abundantly produce microscopic black holes at the LHC

- Assume classical black hole production, and semi-classical decays
 - (For this analysis.) Expected to hold well above the reduced Planck scale, \(M_D \).
 - We set the signal cross section to zero below a threshold mass \(M_{th} > M_D \).
 - Black hole quickly evaporates, decaying democratically according to number of degrees of freedom
 - Lots of quarks and gluons (jets), also all other particles

QCD peaks at low numbers of jets \((N_J) \), and low \(\Sigma p_T \)

Black hole scenarios peak at high \(N_J \) and high \(\Sigma p_T \) (here Blackmax \(M_D = 1 \) TeV, \(M_{th} = 4.3 \) TeV, \(n = 2 \) extra dimensions)
Multi-Jet Search: New Physics? Or Set Limits

Require $E_{T1} > 250$ GeV for good trigger efficiency

For N_J, count jets with $p_T > 50$ GeV

To good approximation, the shape of Σp_T is the same in QCD for $N_J < 5$ and $N_J \geq 5$.

- Use 1.1 TeV < Σp_T < 1.2 TeV region for normalization, then compare the $N_J < 5$ shape to $N_J > 5$ data
- Predict number of events in signal region: $N_J \geq 5$, $\Sigma p_T > 2$ TeV
 - 3.7 ± 1.0 (stat) ± 1.1 (syst) compared to 7 data
 - Largest syst is 24% due to QCD modelling
- At 95% CL cross section \times acceptance < 0.29 pb
- Set model-dependent limits in M_D, M_{th}, n space

A. Gibson, Toronto
Searches with a Dijet Signature, and Some Nuts and Bolts

- Also perform sensitive searches for new physics at highest pt using dijet events
 - ≥ 2 jets, instead of ≥ 5
- Look for “bumps” in the m_{jj} distribution, and discrepancies in the dijet angular distributions
- Results presented today with 36 pb$^{-1}$
 - New Journal of Physics 13 (2011) 053044
- And new results, for the Dijet Mass Distributions, with 0.81/fb
 - ATLAS-CONF-2011-095
 - Expand on the experimental details for this latest search
- Require two high pt jets
 - Reconstructed with anti-k_T algorithm, $R = 0.6$
 - Calibrated with MC-derived p_T and η dependent function
 - Apply “cleaning cuts” to remove events affected by non-collision backgrounds
 - Require $|y_1 - y_2| < 1.2$ and $|\eta| < 2.8$ to suppress QCD
 - For jet trigger efficiency, require $m_{jj} > 717$ GeV (effectively, $p_T^{j2} > 150$ GeV)
- 2011 data-taking brings a few new challenges
 - Significant in-time and out-of-time pileup; modeled in MC and MC re-weighted to match data
 - Small hole in central EM calorimeter (6 front end boards, O[1%]) warrants fiducial cut
Importance of Dijet Angular Information

- Both the resonance search and the angular search **take advantage of the angular distribution of dijets in background (QCD, relatively forward) vs. many signal hypothesis (e.g. q*, relatively central)**
 - Resonance analysis cuts on $|y_1 - y_2| < 1.2$
 - Angular analysis analyzes the angular distribution
 - Or analyzes F_{χ}, the fraction of events with small $|y_1 - y_2|$, in bins of m_{jj}

\[\text{QCD events in} \ 1 \ \text{pb}^{-1} \]
\[\text{Signal events in} \ 1 \ \text{pb}^{-1} \]

ATLAS Preliminary

July 21, 2011
A. Gibson, Toronto
Dijet Resonance Search: Data and Background Fit

- Model-independent search for new physics
 - Do we see any bumps in m_{jj}, on top of a smooth background?

- Data fit well by the same QCD-compatible function in use for some time at the LHC and Tevatron
 \[f(x) = p_1 (1 - x)^{p_2} x^{p_3 + p_4 \ln x} \]
 - Use χ^2 test statistic, throw pseudo-experiments to evaluate p value in data, $p = 0.35$; reasonable background fit
 - Pseudo-experiments are Poisson fluctuations around background fit

- Can the fit absorb a signal?
 - Not easily, for a resonance
 - But, if $p < 0.01$ we exclude most discrepant region
 - Improves sensitivity, and greatly improves the fit if there’s a large signal
Do we find a dijet resonance? Ask BumpHunter

- Use BumpHunter (arXiv:1101.0390) to look systematically for candidate “bumps”
 - Two bins to half the width of the m_{jj} distribution
 - Look for the candidate “bump” least consistent with smooth background
- Consider the Poisson p value of the most discrepant bump
 - Compare to most discrepant bumps from pseudo-experiments (PE’s); thus account for “look elsewhere effect”
- In 2011 dataset, the most discrepant bump is two bins wide, 1162-1350 GeV
 - p value of 0.62
 - Perfectly likely to get a bump as significant from a Poisson fluctuation of smooth bkgrd
 - No evidence for new physics 😊
No Evidence for New Physics in Dijet Mass Distribution: Set Limits

- For the “limit setting phase” we have specific models in mind (one theory, with fixed parameters, e.g. 2 TeV \(q^* \))
- Signal events with full detector simulation for \(m_{jj} \) templates
 - Background fit for limit setting uses signal template on top of smooth background function
- Bayesian limits: prior flat in signal cross-section
- Set limits on various models
 - \(q^* \) and axigluon limits nearly 1 TeV better than best published limits
 - New: scalar color octets
 - T. Han et al JHEP 12 (2010) 085

<table>
<thead>
<tr>
<th>Model</th>
<th>95% CL Limits (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected</td>
</tr>
<tr>
<td>Excited Quark (q^*)</td>
<td>2.77</td>
</tr>
<tr>
<td>Axigluon</td>
<td>3.02</td>
</tr>
<tr>
<td>Color Octet Scalar</td>
<td>1.71</td>
</tr>
</tbody>
</table>

- Also limits on simplified Gaussian models, for various means, widths – w/ systematics
 - Intended to ease application to other models

A. Gibson, Toronto
Dijet Angular Analysis: Chi

- Normalized spectra of $\chi = \exp(|y_1 - y_2|)$
 - Finely resolve angular distributions, coarse mass bins
 - Normalized so that systematics cancel (luminosity, bulk of jet energy scale)
 - Highest mass bin acts as a search bin
- Event selection very similar to m_{jj} search
 - Consider also higher rapidity, lower p_T jets and lower m_{jj}
- “Discovery Phase”
 - Compare data with NLO QCD prediction
 - Use χ^2 as a test statistic, compare with pseudo-experiments
 - p values 0.44, 0.33, 0.64, 0.89, 0.44
 - No evidence for new physics ☹️
New Dijet Angular Observable: $f_\chi(m_{jj})$

- $F_\chi(m_{jj}): \frac{N(|y_1-y_2| < 1.2)}{N(|y_1-y_2| < 3.4)}$
 - Coarse use of angular information: chi fraction F_χ
 - Roughly, the fraction of events with central, “new physics”-like, jets
 - Resolve angular deviations with fine bins of m_{jj}; $F_\chi(m_{jj})$
 - Combine some strengths of the resonance analysis and the chi analysis

- Use bin-by-bin analysis to compare with NLO QCD prediction
 - Calculate p value from PE’s (0.28)
 - In QCD pseudo-experiments we see something more discrepant 28% of the time
 - Our data is consistent with statistical fluctuations around QCD
 - No evidence for new physics ☹

- Set limits using Bayesian and/or Frequentist approaches (likelihood ratio)
Summarizing ATLAS searches with dijets

- Several analysis techniques that make complementary use of dijet m_{jj} and angular distributions
 - Unfortunately, no evidence for new physics
 - So, we set the world’s best limits instead (for q^*, axigluons, low multiplicity QBH)
- New $F_\chi(m_{jj})$ observable combines advantages of what were fairly separate methods
 - Continue to explore the best ways to slice this 2D space of observables (m_{jj} and angular information)
- Limits on q^* as a manifestation of quark compositeness
- Also consider contact interactions, as a low energy proxy for quark compositeness
- And low multiplicity Quantum Black Holes (QBH)
 - Near the Planck mass, M_D, it has been suggested that gravitational interactions might be dominantly _low_ multiplicity, e.g. dijets

Limits from 0.81 fb⁻¹

<table>
<thead>
<tr>
<th>Model</th>
<th>95% CL Limits (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected</td>
</tr>
<tr>
<td>Excited Quark q^*</td>
<td>2.77</td>
</tr>
<tr>
<td>Axigluon</td>
<td>3.02</td>
</tr>
<tr>
<td>Color Octet Scalar</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Limits from 36 pb⁻¹

<table>
<thead>
<tr>
<th>Model and analysis strategy</th>
<th>95% CL limits (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected</td>
</tr>
<tr>
<td>QBH for $n = 6$</td>
<td></td>
</tr>
<tr>
<td>Resonance in m_{jj}</td>
<td>3.64</td>
</tr>
<tr>
<td>$F_\chi(m_{jj})$</td>
<td>3.49</td>
</tr>
<tr>
<td>θ_{np} parameter for $m_{jj} > 2$ TeV</td>
<td>3.37</td>
</tr>
<tr>
<td>11-bin χ distribution for $m_{jj} > 2$ TeV</td>
<td>3.36</td>
</tr>
<tr>
<td>Contact interaction Λ $F_\chi(m_{jj})$ Bayesian</td>
<td>5.7</td>
</tr>
<tr>
<td>$F_\chi(m_{jj})$</td>
<td>5.7</td>
</tr>
<tr>
<td>F_χ for $m_{jj} > 2$ TeV</td>
<td>5.2</td>
</tr>
<tr>
<td>11-bin χ distribution for $m_{jj} > 2$ TeV</td>
<td>5.4</td>
</tr>
</tbody>
</table>
Monojets: a single jet plus missing E_T

- Another possible consequence of large extra dimensions (e.g. ADD)
 - Produce jet + Graviton, graviton disappears into the extra dimension
 - Observe a single (high p_T) jet and missing E_T
- Submitted to PLB based on 33 pb$^{-1}$ (http://arxiv.org/abs/1106.5327)
 - Search for new phenomena with the monojet and missing transverse momentum signature using the ATLAS detector in $\sqrt{s} = 7$ TeV proton-proton collisions
 - Updated CONF note with 1 fb$^{-1}$
 - **First presented in public today!**
- Missing E_T trigger
- Signal region (“HighPt”)
 - $p_T^{j1} > 250$ GeV, missing $E_T > 220$ GeV,
 - $p_T^{j2} < 60$ GeV, $\Delta\phi(j2, \text{missing } E_T) > 0.5$
 - No reasonable e’s, μ’s
- Missing E_T calculated from locally calibrated clusters of calorimeter cells
- Anti-k_T 0.4 jets (calibration, cleaning much as in dijet search)
- Consider control regions with electrons or muons, and cross-check with “lowPt” and “veryHighPt” cuts
Monojet Background Predictions

- Dominant background is EW
 - “Irreducible” (Z → νν + jets) and single lepton + jets
 - EW normalization taken from data, applied to MC samples
- Multi-jet background estimated in data by reversing delta-phi cut and allowing a 2nd jet
Monojets: Determining the EW normalization

- Use a control sample, with one or more electrons or muons to normalize the EW background prediction
- Test the shape of the ALPGEN + NNLO k factor prediction vs. leading-jet p_T threshold

- Normalization factors
 - 0.87 ± 0.05 for muons (used also for $Z \to \nu \nu$)
 - 0.81 ± 0.09 for electrons
No evidence for new physics: set limits

- Excellent agreement between data and the background prediction
 - 965 events vs. 1010 ± 37 (stat) ± 65 (syst);
 - Dominant systematic is normalization of EW background, a “good” systematic

- So, we set limits
 - Using the total number of events in the signal region
 - CLs, modified frequentist, statistical analysis

- Model-independent limit on cross section times acceptance
 - 0.11 pb, at 95% CL

- Using the acceptance from ADD signal samples (Pythia) obtain
 - 95% CL limit on fiducial cross section: 0.13 pb
Limits on Planck Scale, MD, for ADD extra dimensions

- Comparing to the ADD cross section, set limits as a function of the number of extra dimensions
 - Additional theory uncertainties 20%
 - ISR/FSR, scale, etc.
- Using (Pythia) low-energy effective theory version of ADD
 - Invalid for \sqrt{s}-hat > M_D
 - So, we interpret it carefully
- Extend the reach of previous limits
 - ATLAS, CMS, CDF, LEP

<table>
<thead>
<tr>
<th>n</th>
<th>expected [TeV]</th>
<th>observed [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.98</td>
<td>3.16</td>
</tr>
<tr>
<td>3</td>
<td>2.44</td>
<td>2.56</td>
</tr>
<tr>
<td>4</td>
<td>2.18</td>
<td>2.27</td>
</tr>
<tr>
<td>5</td>
<td>2.03</td>
<td>2.10</td>
</tr>
<tr>
<td>6</td>
<td>1.92</td>
<td>1.99</td>
</tr>
</tbody>
</table>
Conclusions

• LHC and ATLAS performing well!
• Sensitive searches for new physics with jet signatures
 – Multi-jet, Dijet, and Monojet
 – Probing the highest energies directly accessible at the LHC
 – And probing popular models, like those with extra dimensions
• Unfortunately, no evidence yet for new physics
 – Instead, set excellent limits on particular models, and model-independent limits
 – q^*, axigluons, scalar octets, contact interactions, Planck scale for black holes and extra dimensions
• Looking forward to lots of data and excellent discovery possibilities this year
• LHC center of mass energy can make a big difference for searches at high p_T
 – Especially for dijet searches
 – Would be great to run at 8 TeV, 9 TeV, or of course 14 TeV center of mass
• Hopefully some surprises, and new physics, are on the horizon!

- https://twiki.cern.ch/twiki/bin/view/AtlasPublic
Related Presentations at EPS-HEP 2011

- Thorsten Alexander Dietzsch, poster
 - *Search for New Physics in Dijet Mass and Angular Distributions in pp Collisions at sqrt(s) = 7 TeV measured with the ATLAS Detector*

- Valerio Rossetti, poster
 - *Search for new physics in events with monojet and large MET with ATLAS detector*

- Dave Charlton (Monday plenary)
 - *Searches for new physics and highlights from ATLAS*

- Thorsten Kuhl (earlier today)
 - *Exotics Searches in Top, Top-like and Diboson Final States with the ATLAS Detector*

- Tetiana Hryn'ova (coming soon, in this session)
 - *Exotics Searches in Photon and Lepton Final States with the ATLAS Detector*

- Paolo Francavilla
 - *Measurement of single and multi-jet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with ATLAS*

- Dag Gillberg, poster
 - *Jet performance and inclusive jet cross section measurement in ATLAS*

- Caterina Doglioni
 - *Jet resolution and energy scale uncertainty in ATLAS*

- Andreas Salzburger
 - *Heavy Flavor Production in ATLAS*
Muon Spectrometer ($|\eta|<2.7$): air-core toroids with gas-based muon chambers
Muon trigger and measurement with momentum resolution < 10% up to $E_\mu \sim 1$ TeV

Inner Detector ($|\eta|<2.5$, $B=2T$): Si Pixels, Si strips, Transition Radiation detector (straws)
Precise tracking and vertexing, e/π separation
Momentum resolution: $\sigma/p_T \sim 3.8 \times 10^{-4} \ p_T (\text{GeV}) \oplus 0.015$

3-level trigger reducing the rate from 40 MHz to ~200 Hz

EM calorimeter: Pb-LAr Accordion
e/γ trigger, identification and measurement
E-resolution: $\sigma/E \sim 10\%/\sqrt{E}$

HAD calorimetry ($|\eta|<5$): segmentation, hermeticity
Fe/scintillator Tiles (central), Cu/W-LAr (fwd)
Trigger and measurement of jets and missing E_T
E-resolution: $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$

Length: ~ 46 m
Radius: ~ 12 m
Weight: ~ 7000 tons
~10^8 electronic channels
3000 km of cables
ATLAS Calorimeters

~180,000 cells in LAr calorimeter
~5,000 cells in Tile calorimeter

Up to four longitudinal samplings, each, for EM and hadronic.

Fine transverse and longitudinal segmentation.

\[\eta = -\ln \left[\tan \left(\frac{\theta}{2} \right) \right] \]
Very high energy mono-jet event
\(p_{T}^{j1} = 600 \text{ GeV}; \ p_{T}^{j2} < 30 \text{ GeV}; \) Missing \(E_{T} = 520 \text{ GeV} \)

ATLAS-CONF-2011-096

Run Number: 180309, Event Number: 36060682
Date: 2011-04-27 02:33:15 CEST