

ATLAS Results on Pb+Pb Collisions

Helena Santos, LIP-Lisbon for the ATLAS Collaboration

International Europhysics Conference on High Energy Physiscs, 21–27 July 2011, Grenoble

Heavy Ion Physics

- Systematic study of a hot, dense and strongly coupling systems
- Extending our understanding of QCD by studying distinct phases of matter: hadronic vs. partonic deconfined system (Plasma of Quarks and Gluons)

 $\sqrt{s: 17 \text{ GeV}@SPS 200 \text{ GeV}@RHIC 2.76 \text{ TeV}@LHC}$ Colliding nuclei: Pb+Pb Au+Au Pb+Pb 2

ATLAS Acceptance

Full azimuthal coverage

Triggers used in the 2010 Pb+Pb run:

- Coincidence in (Level-1) Minimum Bias Trigger Scintillators (2.1< $|\eta|$ <3.9)
- Coincidence in Zero Degree Calorimeter ($|\eta| > 8.3$)
- No physics signature triggers (e.g., jets, muons) used in event selection

Collision's Centrality

- Transverse energy in FCal compared to Glauber MC model \otimes p+p data
- Sampling fraction $f = 100 \pm 2\%$, after all trigger and selection cuts
- <N $_{\text{part}}$ > and <N $_{\text{coll}}$ > for each centrality bin are estimated using the same Glauber
 - 80-100% range is excluded in analyses that involve nuclear modification factors due to the large systematic uncertainties affecting these calculations

Charged Particle Multiplicity

- Yield per participant pair increases by factor of two relative to RHIC, in agreement with ALICE measurement (shifted for clearness)
- Charged particle multiplicity by nucleon pair follows a power law

- Variation with centrality consistent between LHC and RHIC (scaled by 2.15)
- Pixel "tracklets" in solenoid off to measure down to $\ensuremath{p_{\scriptscriptstyle T}}\xspace>0$
- Integrated luminosity: 1 μb⁻¹

Azymuthal Anisotropic Flow

• What is the physics responsible for "ridge" and "cone" effects in 2-particle correlations?

- Is due to jet-medium interactions or fluctuations+flow?

Event Plane Resolution

- Best resolution correction for v_2 is obtained in semi-central collisions and in full FCal acceptance

Significant resolution for n=2-6

• Systematic errors estimated via 2-subevent and several 3-sub-event methods

Elliptic Flow - v₂

Tracks within $|\eta| < 2.5$ are correlated to the event plane, which has been measured using the FCAL sector in the opposite hemisphere – FCAL_{P(N)} method

- Rapid rise of $v_2(p_T)$ up to $p_T = 3$ GeV; decrease down to 8 GeV
- Strongest elliptic flow is in mid-central collisions (30-40% and 40-50%)
- Weak p_{τ} dependence beyond 8-10 GeV in central collisions

Pseudorapidity dependence of v₂

Weak dependence, as opposed to RHIC/PHOBOS where v_2 decreases by 30% from η =0 to 2.5 (but, p_T >0, while here p_T >500 MeV)

Higher-order Flow Coefficients

Higher Fourier harmonics, up to v_6 , are extracted via event plane method

- Significant positive v_2-v_6 are measured in broad range of $p_{\rm T}$ and centrality
- Strongest magnitude variations for v_2 , which is lower than v_3 in 0-5% bin
- \bullet Similar $p_{\scriptscriptstyle T}$ dependence for all measured amplitudes

The Rise and Fall of "ridge/cone"

Rise and Fall of "ridge/cone" - p_T evolution

For the 0-10% centrality bin measure the p_T dependence of the "ridge/cone effect", for particles with large pseudorapidity gap, $|\Delta \eta| > 2$

 Strength of long range components first increase to 4-5 GeV then decrease

- The transition from flow-"dominance" to jet-"dominance" occurs at ${\sim}5{\text{-}6}$ GeV

Leptonic Probes

Quarkonia suppression is predicted by lattice QCD calculations

State	χ_{c}	ψ'	J/ψ	Y'	$\chi_{ m b}$	Y
T _{dis}	$\leq T_{c}$	$\leq T_{c}$	1.2T _c	1.2T _c	1.3T _c	2T _c

J/psi anomalous suppression by Debye colour screening was predicted by Matsui and Satz, 1986

 $R_{\mbox{\tiny AA}}$ was shown to be the same at SPS and RHIC

How Z and W bosons are affected by the hot and dense medium? They were never observed in pre-LHC Heavy Ion Collisions...

Inclusive J/psi Production

Phys.Lett.B697:294-312,2011

- J/psi $\rightarrow \mu^+\mu^-$ channel explored
- Integrated luminosity analysed: 7 μb⁻¹

- Muons combined in the Inner Tracker and Muon Spectrometer with $p_{\tau}{>}3$ GeV and $|\eta|{<}2.5$
- J/psi yields in each centrality bin are obtained with a sideband technique. (fits are just for cross check)
- J/psi mass window: 2.95—3.25 GeV

J/psi Suppression

- Relative J/psi yield = $N_{cbin}/N_{40-80\%}$;
- Normalized J/psi yield = $(N_{cbin}/N_{40-80\%}).(N_{coll,40-80\%}/N_{coll,cbin})$ (All bins are corrected for reconstruction efficiencies and bin width)

J/psi yield significantly decreases from peripheral to central collisions Similar trending in LHC, RHIC and SPS

Z Production

- $Z \rightarrow \mu^+\mu^-$ channel explored
- Integrated luminosity analysed: 7 μb⁻¹

- Muons combined in the Inner Tracker and Muon Spectrometer with $p_{\rm T}{>}20$ GeV and $|\eta|{<}2.5$
- 38 candidates in the mass window 66-116 GeV

Not enough statistics to draw conclusions on the normalized yield

W Production

- Veto dimuons with $m_{\mu\mu}{>}60$ GeV (DY & Z candidates) and decays in flight
- Build a template from W $\rightarrow \mu \nu$ MC@2.76 TeV pp
- use a function to describe background
- Find the best estimate of the number of W

 R_{pc} result is consistent with no W suppression, as expected \Rightarrow W bosons yields for a given centrality are a direct measure of N_{coll}

Jets in Pb+Pb Collisions

Expectations from models:

- Medium-induced radiation may cause energy deposition outside jet cone
- Predictions of radiative energy loss suggest energy can be recovered by expanding jet cone

• High z region of fragmentation function sensitive to medium induced radiation

Jets are reconstructed using anti- k_T algorithm with two choices of R parameter (R=0.4 and R=0.2)

- Inputs are 0.1x0.1 ($\Delta\eta x \Delta \phi$) calorimeter towers
- Average background estimated event-by-event per calorimeter sampling layer and per 0.1 η strip

Di-jet Asymmetry

 Enhancement of asymmetric di-jets, relatively to p+p and PYTHIA+HIJING
 → first indication of jet suppression

$$A_{J} = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}} \qquad \begin{array}{c} E_{T1} > 100 GeV \\ E_{T2} > 25 GeV \end{array}$$

• Flatter distribution for R=0.2 jets

|**η**|< 2.8

R=0.4

R=0.2

A,

Di-jet Azimuthal Correlation

 $\Delta \phi = \pi$ acoplanarity remains, while A_l is changing

 Consistent with combinatoric contribution to R=0.4 di-jet $\Delta \phi$ distribution

- 2nd jet "missing" and uncorrelated jet used

p_{T} Spectra of R=0.4 & 0.2 Jets

- Jet energy resolution is dominant in E_{T} and centrality dependent systematic uncertainty
- \bullet Systematic errors on $N_{\mbox{\scriptsize coll}}$ estimates up to 8% in the most central bin
- Centrality independent systematic error of 22% in the normalization due to 4% jet energy scale uncertainty (not shown)

R_{cp} versus **E**_T and Centrality

Reference is the jet yield in the 60-80% centrality interval

• Increasing jet suppression with centrality, up to a factor of 2 in the most central collisions, well beyond statistical and systematic errors • Suppression not dependent on the reported E_T and on jet size

Jet Fragmentation - j_T

Measure the p_T of the fragments normal to the jet axis

• Not unfolded for angular resolution

transverse structure $\langle \cdots \rangle$ $j_T = p_T^{had} \sin \Delta R$ $\int \Delta R = \sqrt{(\eta^{had} - \eta^{jet})^2 + (\phi^{had} - \phi^{jet})^2}$ All charged particles with $p_T > 2 \text{ GeV}$

Compare central to peripheral collisions \rightarrow lack of broadening

Jet Fragmentation - D(z)

Measure the $p_{\scriptscriptstyle T}$ of the fragments parallel to the jet axis

longitudinal structure

Weak D(z) modification in central collisions relative to peripheral

~20%, not dependent on z, for R=0.4 jets ~20% in z~0.1-0.3 for R=0.2

Results do not confirm the expectations

Charged Hadron p_T Spectra

Strongly related to the observed jet suppression

• Corrected for efficiency, secondaries, fakes and resolution

• Cutoff at 30 GeV due to systematic differences in track errors (σ_{d0} and $\sigma_{z0sin\theta}$) between data and MC (under investigation)

Charged Hadron R_{cp}

Reference is the charged particles yield in the 60-80% centrality interval

- Strong suppression is seen in more central events, 0-5%
- No η dependence is observed
- Centrality pattern for hadrons with p_{τ} >20 GeV resembles jet R_{cp}

Highlights from the 2010 Pb+Pb Run

Global observables:

- Centrality dependence of inclusive multiplicity scales with beam energy
- Elliptic flow and higher harmonics show similar $p_{\scriptscriptstyle T},\,\eta$ and centrality behaviour
- The long range "ridge" and "cone" structures in two-particle correlation function at low $p_{\rm T}$ can be explained by flow effects

Leptonic probes:

- J/psi suppression pattern similar at LHC, RHIC and SPS
- Z and W^{\pm} productions consistent with simple scaling with N_{coll}

High p_⊤ observables:

- Jet production suppressed by a factor of 2 in central collisions
- Weak modifications of z and $\boldsymbol{j}_{\scriptscriptstyle T}$ fragment distributions
- \bullet Charged hadron R_{cp} is measured out to 30 GeV; centrality dependence of suppression similar to jets

Backup

2010 Pb+Pb Run

First heavy ion run:

- $\operatorname{sqrt}(s_{NN}) = 2.76 \text{ TeV}$
- Nov 7th Dec 6th, 2010
- ATLAS recorded 9.17 $\mu b^{\mbox{-}1}$ of Pb+Pb data
- Data recording efficiency > 95%

Fraction of data passing data-quality criteria > 99%

Inner Tracking Detectors		Calorimeters				Muon Detectors				
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	csc	TGC
99.7	100	100	99.2	100	100	100	100	99.6	100	100

Luminosity weighted relative detector uptime and good quality data delivery during 2010 stable beams in PbPb collisions at Vs_{NN} =2.76 TeV between November 8th and 17th (in %).

Tracking Methods

Two methods used:

- 1 Kalman Filter based tracking algorithm ATLAS standard
- 2 "Two-point tracklets" Select high quality clusters Select cluster pairs aligned with primary vertex:

$$\sqrt{\left(\frac{\Delta\eta}{\sigma_{\Delta\eta}}\right)^2 + \left(\frac{\Delta\phi}{\sigma_{\Delta\phi}}\right)^2} < 3*\sqrt{2}$$

 $\Delta \Phi$ vs $\Delta \eta$ for all layer-0 and layer-1 pixel clusters pairs

dN_{trk}/dη distributions

Raw (top) and corrected (middle) dN^{trk}/dη using "two-point tracklets" and pixel tracking

5% increase from $\eta=0$ to $\eta=1$ Not sensitive to centrality

V₂ - Comparisons

Jet Reconstruction

• Underlying event estimated and subtracted for each longitudinal layer and for 100 slices of $\Delta\eta$ = 0.1:

 $E_{T,subt}^{cell} = E_T^{cell} - \rho x A^{cell}$

 ρ is energy density estimated event-by-event from average over $0{<}\phi{<}2\pi$

 \bullet Two methods to avoid biasing ρ due to jets

1 - Sliding window exclusion
 2 - Exclude cells in jets satisfying

 $D = E_{T,max}^{tower} / \langle E_T^{tower} \rangle > 5$

- For R = 0.4, add an iteration step to ensure jets with $E_T > 50$ GeV are always excluded from ρ estimate
- Correct for underlying event v₂

Calorimeter fluctuations

Comparison of the per-event standard deviation of summed ET for 7X7 groups of towers between Pb+Pb data and the HIJING+GEANT Monte Carlo simulated events as a function of FCal Σ ET. The Monte Carlo results are shown with and without the rescaling of the FCal ET values.

Jet Energy Resolution

Correction for Off Vertex Tracks

Combined fake and secondary correction at low p_T calculated with HIJING

Tracking Efficiency

Tracking efficiency calculated from the minimum-bias HIJING and HIJING+jet samples.