
Searches for new physics with the top quark

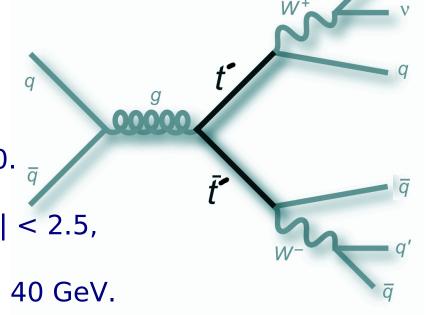
Dhiman Chakraborty

for the D0 Collaboration

International Europhysics Conference on High Energy Physics Grenoble, Rhône-Alpes France July 21-27 2011

Contents

Searches for

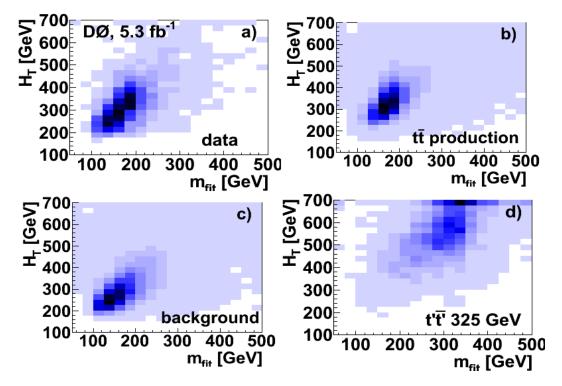

- a pair-produced t' quark decaying like a top quark
- a singly produced W' boson decaying into tb

Search for a t' quark

- A fourth generation of fermions with the neutrino heavier than $m_{\gamma}/2$ is not ruled out yet.
- $t' \rightarrow Wq_d$ will dominate if m(t') m(b') < m(W) and there's moderate mixing between the 4th and the first 3 generations.
- Final state is similar in content to SM ttbar except for fewer b
 quarks. Kinematics are somewhat different, depending on m(t').
- t' is assumed to be narrow compared to detector resolution.
- D0 analysis uses 5.3 fb⁻¹ of *pbar-p* collisions at $\sqrt{s} = 1.96$ TeV and l+jets final states ($l=e, \mu$).

t' search: event selection

- Exactly one clean isolated lepton:
 - an e with $p_{\scriptscriptstyle T}$ > 20 GeV, $|\eta|$ < 1.1,
 - OR a μ with p_{τ} > 20 GeV, $|\eta|$ < 2.0. $_{\overline{q}}$
- At least 4 jets with $p_{\scriptscriptstyle T} > 20$ GeV, $|\eta| < 2.5$, at least one of them with with $p_{\scriptscriptstyle T} > 40$ GeV.
- Missing $p_{\tau} > 25$ GeV.
- $\Delta(\varphi)$ v. Missing p_{τ} cuts to reject QCD fakes.


t' search: data compositon

Data & estimated SM contributions with systematic uncertainties. ALPGEN+PYTHIA are used to model all top and EW processes, except single top, for which COMPHEP is used. NNLO cross sections and m(t) = 172.5 GeV ($\rightarrow \sigma(tt) = 7.48^{+0.56}_{-0.72}$ pb) are assumed.

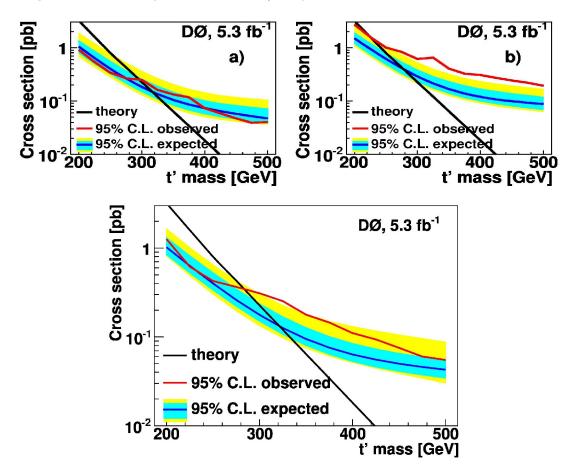
Source	$e+\mathrm{jets}$	μ +jets
$t\bar{t}$ production	678±76	508±55
Single t production	12 ± 4	8±3
W+jets	503 ± 87	648 ± 59
Z+jets	41 ± 7	40 ± 7
WW, WZ, ZZ+jets	25 ± 5	21 ± 5
Multijets	173 ± 42	43 ± 18
Data	1431	1268

t' search: S, B, data

- Likelihood ratio $L = -2 \log(P_{S+B}/P_B)$ used as test statistic, where P_x is the Poisson probability of observing data with x only.
- 2d histo of H_τ v. m(t') from kin. fit used to derive limits by CL_s method.

t' search: characteristics

1d distributions of $H_T \& m_{fit}(t')$ (top: e+jets, bottom: μ +jets)

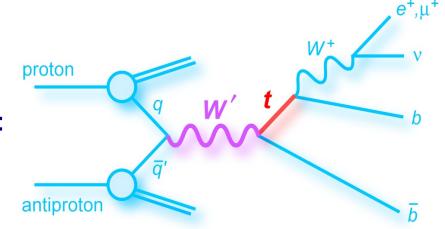


EPS HEP 2011 Grenoble

New physics with the top quark D. Chakraborty

t' search: result

Top: (a) e+jets, (b) $\mu+jets$, bottom: combined.


t' pair production with m(t') < 325 GeV excluded at 95% CL.

Search for a W' boson

- Additional fundamental charged vector bosons appear in many BSM theories including UED, L-R symmetric models etc.
- Generally, $\mathcal{L} = \frac{V_{ij}g_w}{2\sqrt{2}}\bar{f}_i\gamma_\mu \left(a_{ij}^R\left(1+\gamma^5\right)+a_{ij}^L\left(1-\gamma^5\right)\right)W'^\mu f_j + \text{h.c.}$
- $pbar\ p \to W'X \to tb\ X$ interferes with SM single top production $pbar\ p \to W^*X \to tb\ X$ if LH couplings are allowed.
- Previous searches at D0 excluded, at 95% CL, m(W') < 731 GeV for purely LH couplings and m(W') < 739 (768) GeV for purely RH couplings with (without) a light RH neutrino.
- Present analysis: 2.3 fb⁻¹ of *pbar-p* collisions at $\sqrt{s}=1.96$ TeV, $W' \to tb \to l+jets$ final states ($l=e,\mu$) and admits $0 < a_{ij}^{L,R} < 1$

W' search: event selection

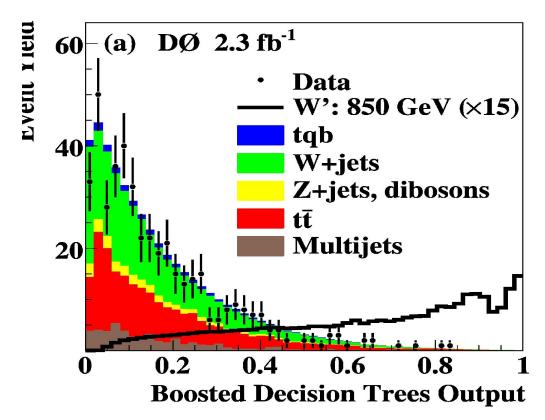
- Exactly one clean isolated lepton:
 - a μ with $p_{\tau} > 20$ GeV, $|\eta| < 2.0$.

- OR an e with $p_{_T} > 15$ (20) GeV and $|\eta| < 1.1$ for $n_{_{jet}} = (>)$ 2,
- At least 2 jets with $p_{\tau} > 15$ GeV and $|\eta| < 3.4$, at least one of them with with $p_{\tau} > 25$ GeV.
- Missing $p_T > 20$ (25) GeV for $n_{jet} = (>) 2$.
- At least one of the jets must be b-tagged.

W' search: data compositon

Data & estimated SM contributions with systematic uncertainties in 24 channels combined (2 lepton flavors \times 3 jet multiplicity bins \times 2 b-jet multiplicity bins \times 2 data collection periods).

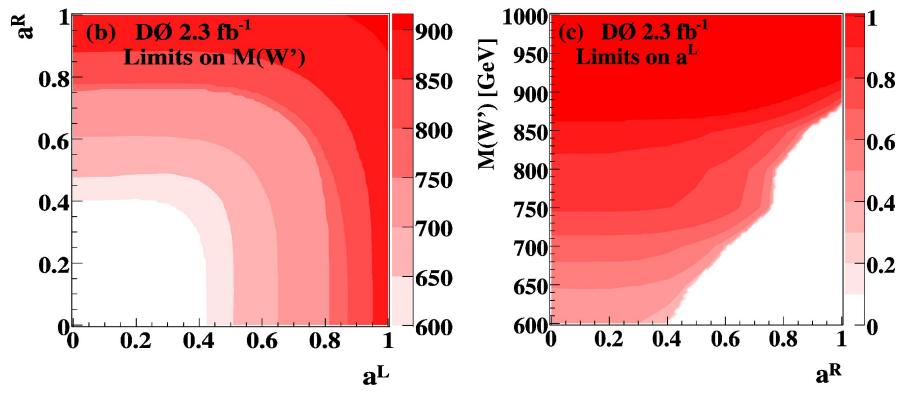
Process	Events			
\overline{tqb}	26.4 ± 2.5			
$t ar{t}$	424.7 ± 58.4			
W+jets	279.5 ± 18.3			
Z+jets	26.0 ± 3.2			
Dibosons	13.0 ± 1.6			
Multijets	60.5 ± 10.8			
Total background	830 ± 62			
Data	831			


W' search: LH & RH couplings

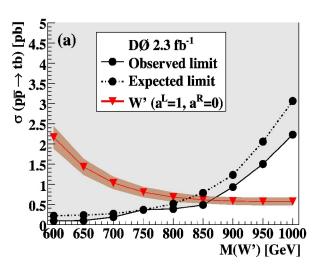
The cross section for single top production in the presence of a W' boson can be written in terms of those for purely LH ($a_L=1$, $a_R=0$) & RH couplings ($a_L=0$, $a_R=1$), for mixed coupling ($a_L=a_R=1$), and the SM cross section ($a_I=a_R=0$):

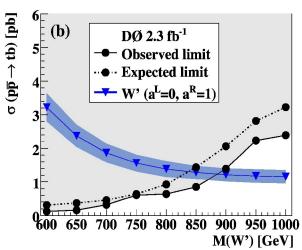
$$\sigma = \sigma_{SM} + a_{ud}^{L} a_{tb}^{L} (\sigma_{L} - \sigma_{R})
+ \left(\left(a_{ud}^{L} a_{tb}^{L} \right)^{2} + \left(a_{ud}^{R} a_{tb}^{R} \right)^{2} \right) (\sigma_{R} - \sigma_{SM})
+ \frac{1}{2} \left(\left(a_{ud}^{L} a_{tb}^{R} \right)^{2} + \left(a_{ud}^{R} a_{tb}^{L} \right)^{2} \right) (\sigma_{LR} - \sigma_{L} - \sigma_{R} + \sigma_{SM}).$$
(2)

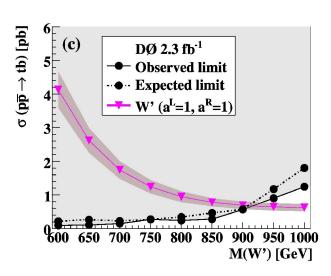
W' search: S, B, data


A BDT is trained, using kinematic and angular characteristics of events, for each channel and each m(W'), using MC for a^L , $a^R = 1$.

W' search: result (1)


Left: 95% CL lower limit on m(W') in the a^L , a^R plane.


Right: 95% Upper limit on a^L in the a^R , m(W') plane.



W' search: result (2)

(a) LH $(a_L=1, a_R=0)$, (b) RH $(a_L=0, a_R=1)$, (c) mixed coupling $(a_L=a_R=1)$

95% CL limits:

m(W') > 863 GeV for purely LH coupling, m(W') > 885 GeV for purely RH coupling, m(W') > 916 GeV for mixed coupling.

EPS HEP 2011 Grenoble

Summary

D0 has searched for a pair-produced t' quark decaying like a top quark in 5.3 fb⁻¹ of data using lepton+jets final states. While a ~2 s.d. excess is observed in the muon channel, the electron channel is most consistent with no signal. Combining the two, t' pair production with m(t') < 325 GeV is excluded at 95% CL. Accepted for publication in Phys. Rev. Lett. arXiv:1104.4522

Summary (contd.)

D0 has also searched for a singly produced W' boson decaying into tb in 2.3 fb⁻¹ of data using lepton+jets final states. A fully general range of left- and righthanded couplings are investigated. 95% CL lower limits on m(W') are set at 863, 885, & 916 GeV for purely LH, purely RH, & mixed couplings respectively. Results published in Phys. Lett. B 699, 145 (2011). arXiv:1101.0806

Thank you!

Back-up slides

W' search: theory and limits

SM cross section for single top production ($a_L = a_R = 0$) is 1.12 pb.

NLO x-sections, observed and expected limits for other scenarios:

M(W')	$(a^L,$	a^R) =	(0, 1)	$(a^L,$	$a^R) =$	(1,0)	$(a^L, a^R) =$	= (1,1)
(GeV)	σ_R	obs	\exp	σ_L	obs	\exp	σ_{LR} obs	\exp
600	3.22	0.12	0.31	2.16	0.09	0.22	4.13 0.09	0.21
650	2.37	0.16	0.37	1.43	0.10	0.23	$2.62 \ 0.10$	0.26
700	1.86	0.32	0.46	1.03	0.18	0.26	$1.74 \ 0.15$	0.23
750	1.56	0.60	0.64	0.80	0.37	0.36	$1.24\ 0.27$	0.28
800	1.38	0.64	0.92	0.68	0.39	0.51	$0.95 \ 0.24$	0.34
850	1.28	0.85	1.44	0.61	0.48	0.78	$0.78 \ 0.28$	0.46
900	1.21	1.39	2.06	0.58	0.93	1.23	$0.69 \ 0.56$	0.57
950	1.18	2.23	2.81	0.57	1.50	2.05	$0.64 \ 0.90$	1.17
1000	1.15	2.39	3.22	0.57	2.23	3.06	$0.62\ 1.24$	1.80