Future Neutrino Oscillation Facilities

I. Efthymiopoulos, CERN

In Europe
Future Neutrino Oscillation Facilities

In Europe

I. Efthymiopoulos, CERN
Why study ν physics?

- νs are part of the Standard Model (SM), yet the least understood particles
 - yet there are in large abundance in the Universe and play an important role in early universe
 - we know they have masses because they oscillate, but which (Majorana mass terms?) and why (hierarchy)? are there only 3-neutrino families of left handed-νs?

- νs call for an extension to the SM
 - no unique theory of ν mass generation - hint for underlying theory?

- is there CP-violation in the leptonic sector as observed for the quarks?
 - this could impact the cosmological models for the matter-antimatter asymmetry in the universe

- the ultimate theory of matter must include quarks and leptons
 - full understanding of the leptons/neutrinos is required
 - can’t be done with LHC or ILC, CLIC
Why long baseline ν beams?

- easy(!!) way to produce ν_s and study their properties
 - alternatives: ν from reactors, beta-decay, μ-decay

- long, very long, or short beam lines depends on the value of the parameters

Typical configuration:

- ν-source:
 - π^\pm decay: ν-(super)beam
 - rad-ion decay: β-beam
 - μ^\pm decay: neutrino factory

- ν-detectors:
 - near detector
 - far detector(s) (on/off axis)

- Intensity (beam power to produce $\pi, \mu, i ons$) is the key factor
 - high-intensity accelerators and beams
Conventional long baseline ν beam - CNGS

$\pi^+ + K^+ \rightarrow (\text{interactions}) \rightarrow \pi^+, K^+ \rightarrow (\text{decay}) \rightarrow \mu^+ + \nu_\mu$

Target Unit

- C rods
- 5(4) mm Ø
- 5 in-situ spares

Muon detectors

- 2 x 41 fixed monitors
- 2 x 1 motorized monitor

Magnetic Horns

- 150(180) kA current
Conventional ν beams - present

- **CNGS@CERN**
 - design: 500kW (beam), 750kW (infrastructure)
 - OPERA/ICARUS experiments
 - high energy for ν_τ appearance
 - no near detector

- **T2K@J-PARC**
 - design: up to 1.6MW (beam), 4MW (infrastructure)
 - near detector + Super-K
 - indication for θ_{13} non-zero and large

- **NUMI@FNAL**
 - design: 400kW (beam), upgrade
 - near detector + MINOS
 - results support θ_{13} non-zero hypothesis
 - possible difference in ν, anti-ν oscillations

Duty factor: $42\text{s}(\text{CNGS})/49.2\text{s (total)} = 85\%$
- 362 kW average power

Beam Intensity: $\sim 2.1\times 10^{19}$ pot/extr
- 423 kW
- 87% nominal

CNGS statistics:
- 11.86×10^{19} pot delivered
- 5×4.510^{19} pot approved program

Note: design and operation of a high-intensity beam facility is always very challenging
Conventional ν-beams – future possibilities

Long-baseline beams – a staged approach towards high-intensity

JPARC
- **T2K (250km)**
 - 30 GeV beam from MR
 - 70kW operation in 2010

FNAL
- **NuMI/MINOS (735km)**
 - 120 GeV beam from MI
 - 320kW operation

CERN
- **CNGS (732km)**
 - 400 GeV beam from SPS
 - 300–400kW operation

CNGS+ (732km) or
CN2PY (2300km)
- 500–750kW, with SPS and injector upgrade

T2K (250km)
- 30 GeV beam from MR
- reach 500kW in 2013

T2O (658km)
- 30 GeV beam from MR
- 1.66MW with MR upgrades

LBNE/DUSEL (1300 km)
- initial: 700kW
- final: 2MW, 60–120 GeV beam with Project-X

T2K (250km)
- 30 GeV beam from MR
- reach 500kW in 2013

T2K (250km)
- 30 GeV beam from MR
- reach 500kW in 2013

NOνA (830km–OA)
- 120 GeV beam from MI
- 700kW with MI upgrade

LBNE/DUSEL (1300 km)
- initial: 700kW
- final: 2MW, 60–120 GeV beam with Project-X

CN2PY (2300km)
- 2MW, LP-SPL + HPPS

CN2FR (130km)
- 4MW HP-SPL + accumulator

LAGUNA–LBNO, EUROv FP7 Design Studies
ν-beams - Future possibilities : Japan

- T2K beam to Super-Kamiokande

O(1[MWx10^7s]~2e21pot) is major milestone (turning point)
Need to reach ASAP

□ recovery from earthquake damages ongoing, expect to restart the J-PARC in Dec’11, beam for T2K in March’12
ν-beams - Future possibilities: Japan

- T2K beam to Super-Kamiokande + Okinoshima

Okinoshima: 50kt LArgon TPC (658km, 0.78deg OA)

Kamioka: 2×500kt water Cherenkov (295km, 2.5deg OA)

Courtesy: T. Kobayashi - KEK
v-beams – Future possibilities: FermiLab

NOvA off-axis experiment @FNAL

- 120 GeV beam from MI like NUMI

LBNE very-long baseline beam to DUSEL

- initial phase: same beam as NuMI-NOvA – 120 GeV from MI, 700kW
- upgrade to: 2.3 MW – Project-X
- far detector: 100kt Water Cherenkov (Super-K technology) or LArgon TPC

- NuMI beam upgrade: 320--> 700kW
 - use recycler as p-ring
 - reduce MI cycle time from 2.2s to 1.33s
 - new high-power target station
 - new extraction/injetcion lines
 - expect: 6×10^{20} pot/yr starting 2014

 Courtesy: FNAL - NuMI, LBNE web pages
ν-beams - Future possibilities: CERN

- Long-baseline options - LAGUNA_LBNO Design study

CN2PY (Pyhasalmi)
- Initial: beam from SPS (500kW - 750kW)
- Long term: LP-SPL + HPPS - 2MW

CN2FR (Frejus)
- HP-SPL + accumulator ring (5 GeV – 4 MW)
- Synergy with β-beam (γ=100)

CNGS - Umbria
- Beam from SPS (500kW)
- No near detector possibility
ν-beams – Future possibilities : CERN

- **CERN-Frejus-CN2FR(130km) & CERN-Pyhasalmi-CN2PY(2300km)**
 - medium/very-long baseline combination for unique physics opportunities in Europe

- Determine CP-violation by comparison of ν/anti-ν in absence of competing matter effects
- Very low energy beam, huge (WC) detector

- **... and synnergies:**
 - CERN-Frejus : adequate baseline/energy for β-beam – CERN-Pyhasalmi : adequate baseline for Neutrino-Factory from CERN or other labs (~7’000 km from FermiLab/J-PARC)

- Determine CP-violation and mass degeneracy by spectrum measurement and resolve degeneracies and so called “π-transit” effect
- arXiv:0908.3741.v1 for “Magic distance”

graph
CERN ν-beam to Pyhasalmi - CN2PY

Target
0.5-0.750MW

Near detector
CERN ν-beam to Pyhasalmi - CN2PY

- Target 2 MW
- Near detector
- HPPS
- (LP)-SPL
- CNGS
v-beams - Future possibilities : CERN

- **CN2FR : v-sbeam based on HP-SPL to Frejus**

 ![Diagram of HP-SPL block diagram](image)

 Ion species \(\text{H}^- \)
 - **Output Energy** 5 GeV
 - **Bunch Frequency** 352.2 MHz
 - **Repetition Rate** 50 Hz
 - **High speed chopper** < 2 ns (rise & fall times)

 ![Diagram of CN2FR setup](image)

 MEMPHIS
 (Water Cherenkov)

 ![Diagram of MEMPHIS installation](image)

 Courtesy : R.Garoby - CERN

 LAGUNA
 Courtesy : LAGUNA
CN2FR - Technical challenges:

- **Target design**
 - impact of the 4MW beam
 - baseline: Ti pebble bed target (3mm spheres)

- **Horn design**
 - high current, mechanical constraints due to physics requirements, radiation, high-current (heating), pulsing
 - **Solution**: $4 \times 1 \text{ MW} = 4 \text{ MW} !!!$
 - four target/horn assemblies mounted together in a mechanical frame
 - horn design similar to that of MiniBooNe

Beam switchyard

- 5 GeV, 4MW beam
- 50Hz pulses

Four horn assembly

- $4 \times 5 \text{ GeV}, 1 \text{ MW beams}$
- @ 12.5 Hz

Single horn design

- 230 cm
- 112 cm
- $\sim 300-400 \text{ kA}$
Future Possibilities – Neutrino Factory

- ν_s from accelerated and stored μ^+ and μ^-
- precision-era facility
 - θ_{13}, CP-violation, mass hierarchy, physics beyond SM

- International Collaborative Effort within
 - IDS-NF : http://www.ids-nf.org
 - EURONU/FP7 : http://www.euronu.org

Key technical challenges

- **Target station –** MERIT & CERN
 - liquid-Hg jet (baseline) @ 20m/s
 - tapered solenoid for pion capture
 - 20T tapering to 1.75T in ~13m
 - Alternatives: tungsten-powder jet, tungsten bars

- **Ionization cooling –** MICE & RAL
 - RF in B-fields

- **Rapid acceleration –** EMMA @ Dasebury
 - Fast acceleration of muons
 - Re-circulating linacs, ns-FFAGs

Layout

- long/very-long baseline beams
- near/far detector combination
 - MIND(MINOS-type), LSND(liquid scintillator), or LArgon-TPC
v-Factory : Target R&D

NF - target station

Key results

- Beam power(PS): 3.0×10^{13} protons @24GeV,
 - 115kJ beam pulse energy
- Hg-jet disruption mitigated by magnetic field
- Disruption length 28cm
 - Refill time @ 20m/s = 0.014s - 70Hz
- Demonstrated operation at:
 - $115\text{kJ} \times 70\text{ Hz} = 8\text{ MW}$

MERIT Experimental Setup

Hg-jet - beam impact $16 \times 10^{12} \text{ p, 5T field, 14 GeV/c}$

Hg-jet is restored at the end
v-Factory: Target R&D

Key results:

- Beam power (PS): 3×10^{13} protons @ 24 GeV, 115kJ beam pulse energy
- Hg-jet disruption mitigated by magnetic field, disruption length 28 cm, refill time $@ 20\text{m/s} = 0.014\text{s} = 70\text{Hz}$
- Demonstrated operation at: $115\text{kJ} \times 70\text{ Hz} = 8\text{ MW}$

![Diagram of v-Factory Target R&D](image)
v-Factory : Target R&D

NF - target station

MERIT Experimental Setup

Key results

- Beam power(PS): 3.0×10^{13} protons @24GeV,
 - 115kJ beam pulse energy
- Hg-jet disruption mitigated by magnetic field
- Disruption length **28cm**
 - Refill time @ 20m/s = 0.014s - 70Hz
- Demonstrated operation at:
 - 115kJ × 70 Hz = 8 MW
v-Factory : Muon Cooling R&D

- MICE Ionization cooling experiment @ RAL
 - realistic section of the NF cooling channel
ν-Factory : Rapid Acceleration R&D

Rapid μ acceleration
- rapidly increase γ to increase μ lifetime

- **LINAC/RLAs**
 - superconducting LINAC
 - large acceptance
 - Recirculating RLAs
 - rapid acceleration
 - cost-effective use of RF power

- **FFAG (Fixed Field Alternating Gradient accelerator)**
 - large aperture magnets with fixed field
 - large acceptance, cost-effective use of RF
 - challenging injection/extraction systems
Future Possibilities - β-Beams

- Neutrinos from accelerated and stored radioactive ions, pure ν_e or anti-ν_e beams
- Two ion combinations under study: $^{6}\text{He}/^{18}\text{Ne}$ and $^{8}\text{Li}/^{8}\text{B}$
- Key assets for CERN: existing accelerators and experience in ISOLDE for handling or RIB

- Technology challenges
 - Ion production
 - Ion collection and bunching
 - Ion acceleration
 - Collective effects
 - Ion decays

✓ Synergy with super-beam to Frejus
- θ_{13}, CP-violation study in the absence of matter effects
Baseline option (6He and 18Ne). 18Ne production experiments in 2011. 8Li can be produced in sufficient quantities with ISOL & n-converter.

18Ne: Molten Salt Loop

6He & 8Li: ISOL & n-converter

8B & 8Li: Production Ring

T. Stora

C. Rubbia
Future possibilities – Short Baselines

- Short baselines to search for anomalous ν oscillations – sterile ν’s ??
- **FNAL**: Booster beam (8 GeV) to MiniBooNE and upgrades, MicroBooNE
- **CERN**: PS Neutrino Beam

- Beam line originally operated in early 80’s for PS169, PS181, PS180(BEBC)
- Near (150t) + Far(600t) detector with **ICARUS LArgon technology**
- Expect: $6.13 \times 10^{19} \div 2.1 \times 10^{20}$ pot/y @ 20 GeV, depending on beam sharing
The physics opportunity ...

- New results are coming up that change the ν-physics landscape and will help to better define a future ν-program among the all possible options currently under study
 - **T2K**: θ_{13} non-zero and large
 - **NuMI/MINOS**: θ_{13}, $\nu \leftrightarrow$ anti-ν results
 - **CNGS**: $\# \bar{\nu}_T$ events observed wrt expectations?
 - **Reactor experiments**:
 - θ_{12}, θ_{13} measurement/new limits
 - **LHC**: is there physics beyond the SM?

...and of course any unexpected physics !!!
Future v-Oscillation Facilities

... and the challenge

- Future v-facilities will require:

 - Innovative ideas and new accelerator technologies to be developed

 - Collaboration and coordination for accelerator and detector R&D at a global scale

 - The v-physics and accelerator community defines a prioritized roadmap of facilities to make v-physics a valid option for HEP in // to LHC and its upgrades
Future ν-Oscillation Facilities

- To know more about ν-beams and associated physics:
 - NUFAC11 Workshop @ CERN/UniGe in August 1-6, 2011
 - http://nufact11.unige.ch