

Search for GMSB yy events with large missing transverse energy at the Tevatron

Mark Adams University of Illinois at Chicago

- GMSB introduction
- D0 detectors and integrated luminosity
- Photon selection
- Missing Transverse Energy (MET) construction
- Backgrounds: instrumental and genuine
- Exclusion limit
- Summary

3

SM production of $\gamma\gamma$ with large MET is small - so can be sensitive to new physics

In Gauge-Mediated Supersymmetry Breaking (GMSB) models masses of SUSY partners arise from SM gauge interactions masses are proportional to effective SUSY breaking scale Λ SUSY dynamically broken in hidden sector and communicated to Messenger sector via new gauge interactions

Gravitino has no SM gauge interactions so is LSP. Assume $\tilde{\chi}_1$ is the NLSP Assume prompt decays

Assuming R parity (SUSY pair production) largest σ at Tevatron is chargino and neutralino production: $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\pm} and \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{\circ}$

Decays to
$$\tilde{\chi}_{1}^{0}$$
 and eventually $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$
 $p\overline{p} \rightarrow gauginos \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rightarrow \gamma \gamma \tilde{G} \tilde{G} + X$
 $\gamma \gamma + MET + X \text{ final state}$

GMSB Benchmark

Many SUSY models, choose one GMSB rider (set of parameters SPS8) as representative description of dynamic symmetry breaking

B. C. Allanach et al., Eur. Phys. J. C 25, 113 (2002). SPS8 = Λ is unconstrained, M_{mes} = 2 Λ , tan β =15, and μ >0 NLO production cross section from Prospino 2.1

SUSY particle masses, as well as production cross sections, are determined by Λ

EPS - Mark Adams University of Illinois at Chicago

5

7/20/11

- Sample Selection:
- Two photons are required in the (central calorimeter cryostat)
- Both photons $E_T > 25$ GeV
- no explicit requirements for jets and leptons
- Study signal and background contributions to MET
- Signal populates MET> 50GeV
- SM Backgrounds dominate use data driven SM background estimates except for small contribution from W/Z+γγ events (MC)
- Instrumental MET sources (SM γγ, γ+jets, MultiJet) (mismeasurements create E_T imbalanced event)
- Genuine MET source (W γ , W+jets, W/Z+ $\gamma\gamma$) (SM events containing real MET(from W) + mis-ID $e \rightarrow \gamma$ fakes)

- Electron/Photon reconstruction:
- Localized energy deposits (clusters) in central calorimeter : EM fraction>0.95, $|\eta| < 1.1$, cone radius $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$
- Isolated cluster in calorimeter and tracking
- Shower width in EM3 consistent with EM energy deposit (EM3 has 0.05x0.05 $\,\eta \phi$ segmentation)
- Photons are not spatially matched to scintillator or silicon track
- Neural Net trained on track CPS and calorimeter information used to reject 50% of remaining jets, with γ efficiency of 98%
- Energy resolution: $\sigma(E)/E \approx (15/VE+4)\%$

Require 2 photons, each with $E_T > 25$ GeV in the central calorimeter $|\eta| < 1.1$

- Missing Transverse Energy definition
- Vector sum of transverse energy of the EM and Fine Hadronic calorimeter cells surviving noise algorithms (cells $|\eta| < 4.2$ with segmentation 0.1x0.1 in η - ϕ)
- Includes corrections for:
 - energy scale of EM objects
 - energy scale of jets (adding any coarse hadronic cells contained in the jets)
 - p_T of muons subtracted and then dE/dx added back
- 3 Topological $\Delta \phi$ requirements to reduce MET mismeasurement:
 - $\Delta \phi(EM_1, EM_2) > 0.1$ [removes beam halo]
 - $\Delta \phi(EM_i, MET) > 0.2$ [mismeasured jets aligned; signal anti-aligned]
 - Δφ(Leading Jet, MET) < 2.5 (If jets exists: **p**_T>15GeV; |η_{det}| < 2.5)
 [Leading jet in background is anti-aligned due to energy resolution and falling pt spectrum]

- D0 photons contain 4 EM longitudinal layers and CPS
- Restrict sample to photons that point to within 10cm of primary vertex; non-collision high MET events are rejected

- Events with no intrinsic MET
- Real γ and misID-Jet difference in energy resolution leads to different MET shapes
- SM $\gamma\gamma$ MET > 35 GeV shape modeled in Z-> ee
 - sys err estimated by data-MC difference
 - Shape agrees with Z-> ee for MET< 35 GeV
- γ+jets and multi-jets same requirements as γγ sample, except 'γ' fails the NN EM ID cut.
 - $\gamma\gamma/\gamma$ +jets determined from fit to MET<20 GeV
- Total instrumental MET background for MET< 10 GeV normalized to γγ data
- 41% of the sample over full MET range is SM $\gamma\gamma$

- SM $\gamma\gamma$ + MET+ X determined via MC (MADGRAPH)
- eγ sources: have real MET but at least 1 γ is due to electron fake. Excess over instrumental sources in MET> 30 GeV well described by W+γ, W+jets
 - Expected W transverse mass distribution observed
 - W+j normalization from NN shape comparison of real γ and fake γ in MET> 30 GeV
 - Remainder consistent with W+γ after accounting for final state radiation

Observed events, SM backgrounds and 2 GMSB benchmarks presented for three MET bins Instrumental MET sources: SM γγ, γ+jets, MultiJet Genuine MET sources: Wγ, W+jets, W/Z+γγ)

MET interval	Observed events	SM Backgrounds			Expected Signal	
(GeV)		Instr. MET	Genuine MET	Total	GMSB Λ =100 TeV	GMSB Λ =120 TeV
35-50	18	9.6+-1.9	2.3+-0.5	11.9+-2.0	1.8+-0.1	0.3+-0.1
50-75	3	3.5+-0.8	1.5+-0.3	5.0+-0.9	4.1+-0.3	0.8+-0.1
>75	1	1.1+-0.4	0.8+-0.1	1.9+-0.4	14.3+-1.1	4.4+-0.4

Missing E_T

Exclusion Limit

- No Evidence for beyond the SM physics in MET distribution in γγ + MET events
- Limits on GMSB benchmark model derived using Poisson log-likelihood ratio test (CLs modified Frequentist approach) using the full MET distribution.
 T. Junk, Nucl. Instrum. Methods Phys. Res., Sect. A 434,435 (1999)
 W. Fisher, Report No. FERMILAB-TM-2386-E, 2006.
- Pseudoexperiments generated for background only and background+signal hypotheses include statistical and systematic uncertainties
- In SPS8 GMSB model the effective SUSY **breaking scale** $\Lambda < 124$ TeV is excluded at the 95% confidence level; also excludes $m_{\tilde{\chi}_1^0} < 175$ GeV

Backup Slides

Detailed y ID requirements

- EM fraction (EMfrac): EMfrac > 0.95
- Calorimeter Isolation (CaloIso): CaloIso < 0.10
- Track Isolation (TrkIso): TrkIso < 2.0 GeV
- EM3 shower width (EM3w): EM3w < 14(18)
- Photon neural net 5 (NN5 or NN): NN5 > 0.10
- Track Veto (TrkVeto): TrkPrb < 0.0001(0) and HOR < 0.5(0.9).
- Neural Net variables
 - the number of cluster EM1 cells with E > 450 MeV in a $\Delta R < 0.20$ cone about the cluster centroid
 - the number of cluster EM1 cells with E > 450 MeV in a $0.20 < \Delta R < 0.40$ hollow cone about the cluster centroid
 - track isolation
 - the number of CPS clusters in a $\Delta R < 0.10$ cone about the cluster centroid
 - the energy weighted CPS RMS in φ [26].

