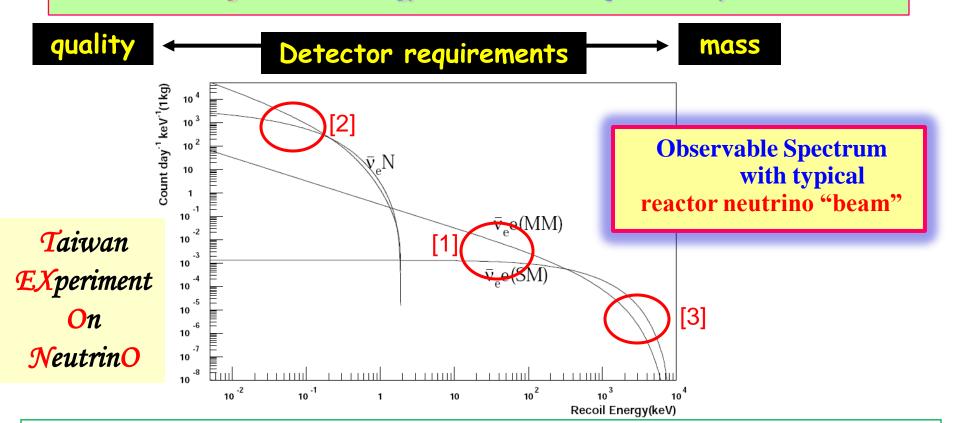
Measurement of \overline{v}_e -e⁻ Scattering Cross-Section and Constraints on Non-Standard Interaction of Neutrino (NSI) and Unparticle Physics (UP) at the Kuo-Sheng Nuclear Power Reactor

- Overview (Collaboration; Program; Laboratory)
- Physics Motivations & Detector Requirements
- Probing New Physics NSI & UP with $\overline{v_e} e^{-}$
- Analysis & Results [PRD 81, PRD 82 2010]

Selçuk Bilmiş

- Academia Sinica /TAIWAN
 - •METU/TURKEY

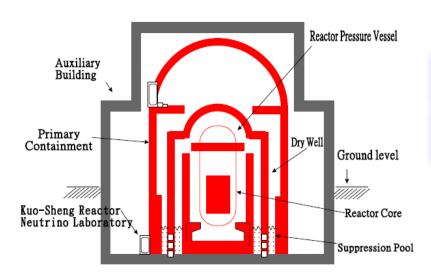


TEXONO Physics Program

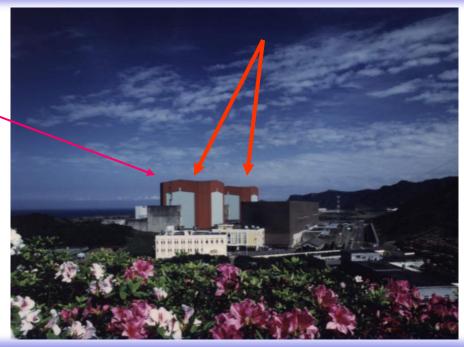
TEXONO Collaboration: Taiwan (AS,INER,KSNPS,NTU);

China (IHEP,CIAE,THU,NKU,SCU,LNU); Turkey (METU, KTU); India (BHU)

Program: Low Energy Neutrino & Astroparticle Physics



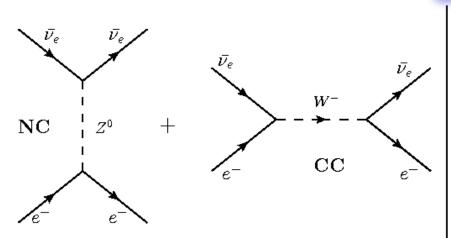
- [1] Magnetic Moment Search at ~10 keV \rightarrow PRL 2003, PRD 2007
- [2] $\overline{\nu}_e$ N Coherent Scattering & WIMP Search at sub keV range \rightarrow PRD-R 2009
- [3] Cross-Section and EW Parameters measurement at MeV range → PRD 2010
- [1,2,3] NSI & Unparticle Search → PRD 2010


Kou-Sheng Reactor Power Plant

Kuo-Sheng Nuclear Power Station: Reactor Building

KS NPS -II : 2 cores \times 2.9 GW

Total flux about 6.4x10¹² cm⁻²s⁻¹


KS v Lab: 28m from core #1

- > 10 m below the surface
- Reactor Cycle: ~50 days OFF every 18 months

v_e - e Scattering Formalism

$$\overline{\nu}_e + e^- \longrightarrow \overline{\nu}_e + e^-$$

- A basic SM process with CC, NC & Interference
- Not well-studied in reactor energy range ~ MeV

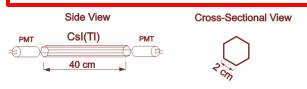
$$(R_{CC}:R_{NC}:R_{Int})$$

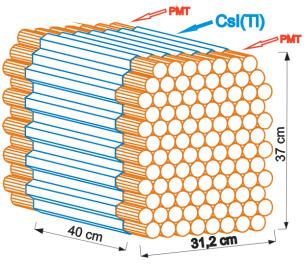
$$R_{SM}(\bar{\nu}_{\mathrm{e}} \mathrm{e}) \rightarrow (0.77:0.92:-0.69)$$

 $R_{SM}(\nu_{\mathrm{e}} \mathrm{e}) \rightarrow (1.83:0.17:-0.99)$

$$\delta[\sin^2 \theta_{\rm W}] \sim \left\{ \begin{array}{l} 0.14 \cdot \delta[\xi(\bar{\nu}_{\rm e}e)] \\ 0.32 \cdot \delta[\xi(\nu_{\rm e}e)] \end{array} \right.$$

$$\pounds^{NC} = -\frac{G_F}{\sqrt{2}} \left[\bar{\nu}_e \gamma^\alpha \left(1 - \gamma_5 \right) \nu_e \right] \left[\bar{e} \gamma_\alpha \left(g_V - g_A \gamma_5 \right) e \right]$$


$$\mathcal{\pounds}^{CC} \ = \ -\frac{G_F}{\sqrt{2}} \left[\bar{e} \gamma^\alpha \left(1 - \gamma_5 \right) \nu_e \right] \left[\bar{\nu}_e \gamma_\alpha \left(1 - \gamma_5 \right) e \right]$$

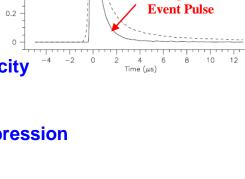

$$\frac{d\sigma_{SM}}{dT}(\bar{\nu}_e e) = \frac{G_F^2 m_e}{2\pi} \begin{bmatrix} (g_V - g_A)^2 + (g_V + g_A + 2)^2 \left(1 - \frac{T}{E_\nu}\right)^2 \\ - (g_V - g_A) \left(g_V + g_A + 2\right) \frac{m_e T}{E_\nu^2} \end{bmatrix} \qquad g_A = -\frac{1}{2}$$

$$g_A = -\frac{1}{2}$$

$$g_V = 2\sin^2\theta_W - \frac{1}{2}$$

CsI Scintillating Crystal Array

CsI(Tl) Detector 9x12 Array 200 kg

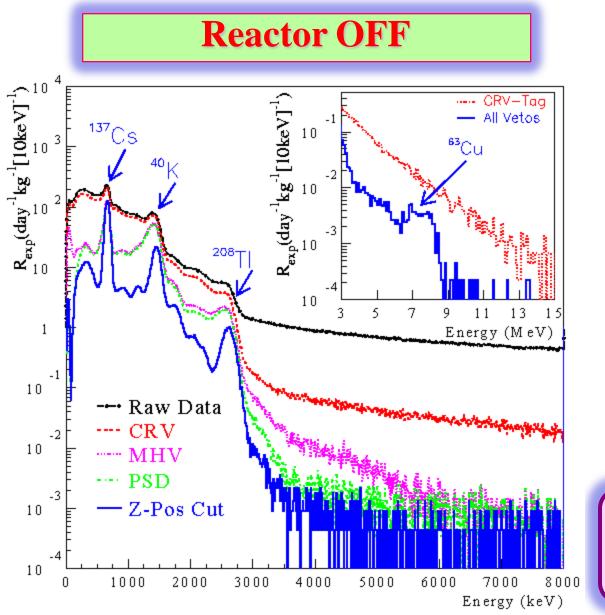


Experimental Approach; Csl(TI) Crystal Scintillator Array:

- proton free target
 (suppress v̄_e-p background)
- scale to 9 (tons) design possible
- good energy resolution, alpha & gammaPulse Shape Discrimination (PSD)
- allows measure energy, position, multiplicity
- more information for
 - background understanding & suppression
 - DAQ Threshold: 500 keV
 - Analysis Threshold: 3 MeV

(less ambient background & reactor \bar{v}_e spectra well known)

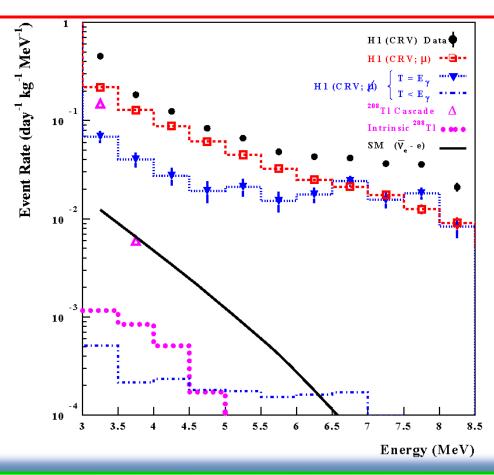
- □ Data Volume: ~ 29883 kg-day / 7369 kg-day Reactor ON/OFF
- Energy: Total Light Collection
 - ♦ σ (E) ~ 6% @ E>660 keV
- Z-position: The variation of Ratio
 - ♦ σ (Z) ~ 1.3 cm @ E>660 keV


Normal Event Pulse

Alpha

$$E \approx \sqrt{Q_L \times Q_R}$$

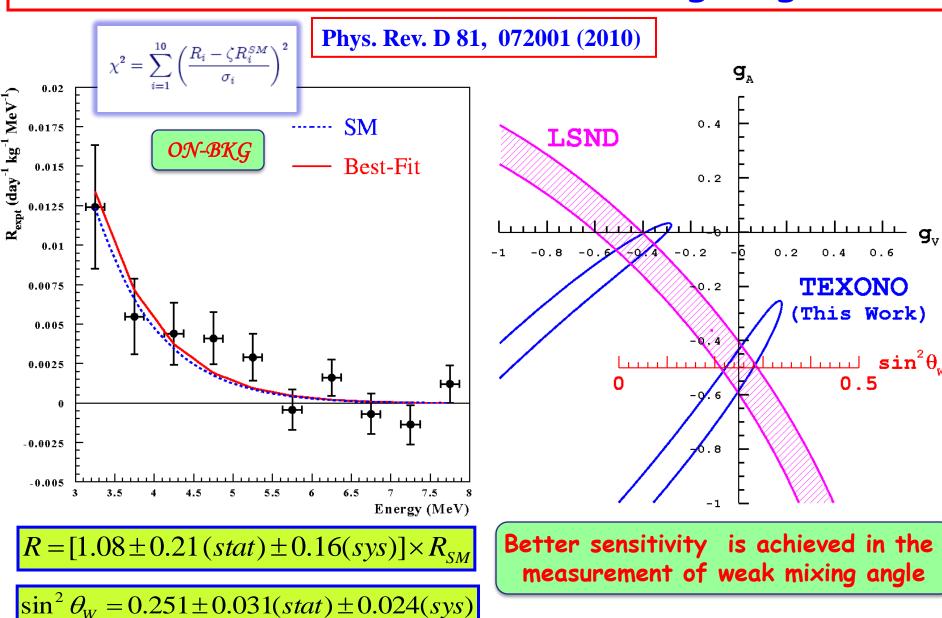
$$Z \approx (Q_L - Q_R)/(Q_L + Q_R)$$


Data Analysis: Event Selection

CUTS (3 - 8 MeV)	DAQ Live Time Eff. ~ 90%
CRV	92.7 %
MHV	99.9 %
PSD	~100 %
Z-pos	80%
Total	77.1 %

$$\frac{S}{B} \cong \frac{1}{30}$$
 at 3 MeV

Background Understanding & Suppression


Combined BKG(SH) from three measurements:

■ Direct Reactor OFF(SH) spectra ⊕ Predicted BKG(SH) from OFF(MH)

Predicted BKG(SH) from ON(MH)

v = ON(SH) - BKG(SH)

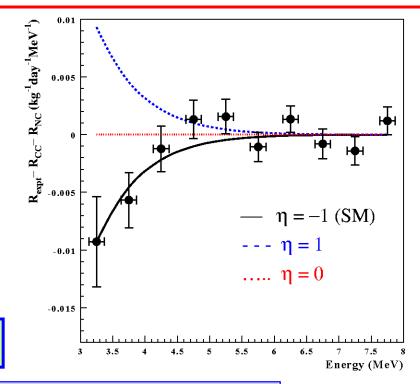
Cross Section & Weak Mixing Angle

World Status: Summary Table

	Experiment	Energy (MeV)	Events	Cross-Section	sin²θ _W
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LAMPF [Liquid Scin.]	7 - 60	236	[10.0 ± 1.5 ± 0.9] x E _{ve} 10 ⁻⁴⁵ cm ²	0.249 ± 0.063
v _e -e-	LSND [Liquid Scin.]	10 - 50	191	[10.1 ± 1.1 ± 1.0] x E _{ve} 10 ⁻⁴⁵ cm ²	0.248 ± 0.051
	Savannah-River [Plastic Scin.]	1.5 - 3.0 3.0 – 4.5	381 71	[0.86 \pm 0.25] x $\sigma_{\text{V-A}}$ [1.70 \pm 0.44] x $\sigma_{\text{V-A}}$	0.29 ± 0.05
	Savannah-River Re-analysed (PRD1989, Engel&Vogel)	1.5 – 3.0 3.0 – 4.5	N/A	[1.35 \pm 0.4] x σ_{SM} [2.0 \pm 0.5] x σ_{SM}	N/A
<u></u>	Krasnoyarsk (Fluorocarbon)	3.15 – 5.18	N/A	[4.5 ± 2.4] x 10 ⁻⁴⁶ cm ² /fission	0.22 ± 0.75
ν _e -e-ζ	Rovno [Si(Li)]	0.6 – 2.0	41	[1.26 ± 0.62] x 10 ⁻⁴⁴ cm ² /fission	N/A
	MUNU [CF ₄ (gas)]	0.7 – 2.0	68	1.07 ± 0.34 events day ⁻¹	N/A
	TEXONO [Csl(Tl) Scin.]	3 - 8	~ 410	$[1.08 \pm 0.21 \pm 0.16]$ x R _{SM}	0.251 ± 0.039

Interference, Neutrino Magnetic Moment and Charge Radius

Interference Term


$$R_{SM} = R^{CC} + R^{NC} + \eta \times R^{I}$$

Interference Term

 η = -0.92 ± 0.30(stat) ± 0.24(sys)

Neutrino Magnetic Moment

$$R(ON - BKG) = R(SM) + \mu_{\nu}^2 \times R(MM)$$

$$\mu_{v}^{2}$$
 = [0.42 \pm 1.79(stat) \pm 1.49(sys)]. μ_{B}^{2}

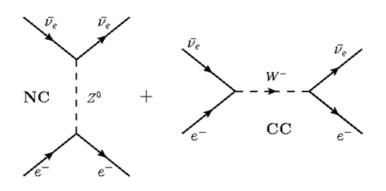
 $\mu_{\bar{\nu}} < 2.2 \times 10^{-10} \times \mu_B$

Ge, 12keV threshold

Neutrino Charge Radius

at 90% C. L.

$$\sin^2 \theta_W \to \sin^2 \theta_W + (\sqrt{2\pi\alpha}/3G_F) \left\langle r_{\overline{\nu}_e}^2 \right\rangle$$

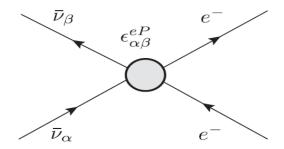

$$-2.1\times10^{-32} < \langle r_{\bar{\nu}_e}^2 \rangle < 3.3\times10^{-32} \ cm^2$$

Non Standard Interactions (NSI)

Predicted by beyond the Standard model Physics, especially neutrino mass theories predict neutral current non-standard interactions:

- From The Exchange of Heavy Gauge Boson Z` (de Gouvea & Jenkins (2006))
- Seesaw type models (Schecter & Valle (1980))
- In SUSY Models with Broken R-parity (Hirsch & Valle (2004))
- In unified SUSY Models as a renormalization effect (Hall, Kostelecky & Raby (1986)
- In models where neutrino masses are calculable from radiative corrections due to the presence of extra Higgs boson. (Zee (1980), Babu (1988))
- etc...

\overline{v}_e - e^- Scattering in SM



$$\begin{split} \mathcal{L}^{NC} &= -\frac{G_F}{\sqrt{2}} \left[\bar{\nu}_e \gamma^\alpha \left(1 - \gamma_5 \right) \nu_e \right] \left[\bar{e} \gamma_\alpha \left(g_V - g_A \gamma_5 \right) e \right] \\ \mathcal{L}^{CC} &= -\frac{G_F}{\sqrt{2}} \left[\bar{e} \gamma^\alpha \left(1 - \gamma_5 \right) \nu_e \right] \left[\bar{\nu}_e \gamma_\alpha \left(1 - \gamma_5 \right) e \right] \end{split}$$

Differential cross section for the $\overline{v_e} \ e \rightarrow \overline{v_e} \ e$

$$\begin{split} \frac{d\sigma}{dT} &= \frac{2G_F^2 M_e}{\pi} \left[g_R^2 + g_L^2 \left(1 - \frac{T}{E_\nu} \right)^2 - g_L g_R \frac{m_e T}{E_\nu^2} \right] \\ g_L &= \frac{1}{2} + \sin^2 \theta_W \\ g_R &= \sin^2 \theta_W \end{split}$$

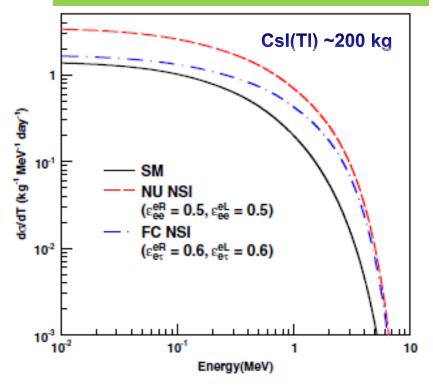
$\bar{v}_e - e^-$ Scattering in NSI

•Model independent way of introducing NSI is via the effective four fermion Lagrangian;

$$\mathcal{L}_{eff}^{NSI} = -\sum_{\alpha\beta fP} \varepsilon_{\alpha\beta}^{fP} 2\sqrt{2} G_F(\bar{\nu}_{\alpha}\gamma_{\rho}L\nu_{\beta})(\bar{f}\gamma^{\rho}Pf)$$

$$\alpha, \beta = e, \mu, \tau;$$
 $f = e; P = L, R;$ $L = (1 - \gamma_5)/2;$ $R = (1 + \gamma_5)/2$

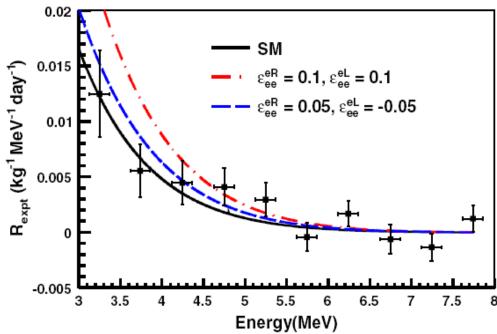
Differential cross section for the $\overline{v}_e \ e \rightarrow \overline{v}_a e$


$$\begin{split} \frac{d\sigma(E_{\nu},T)}{dT} &= \frac{2G_F^2 M_e}{\pi} [(\tilde{g}_R^2 + \sum_{\alpha \neq e} |\epsilon_{\alpha e}^{eR}|^2) + \\ &+ (\tilde{g}_L^2 + \sum_{\alpha \neq e} |\epsilon_{\alpha e}^{eL}|^2) \left(1 - \frac{T}{E_{\nu}}\right)^2 - (\tilde{g}_L \tilde{g}_R + \sum_{\alpha \neq e} |\epsilon_{\alpha e}^{eL}||\epsilon_{\alpha e}^{eR}|) m_e \frac{T}{E_{\nu}^2}] \\ \tilde{g}_L &= g_L + \epsilon_{ee}^{eL} \qquad \tilde{g}_R = g_R + \epsilon_{ee}^{eR} \end{split}$$

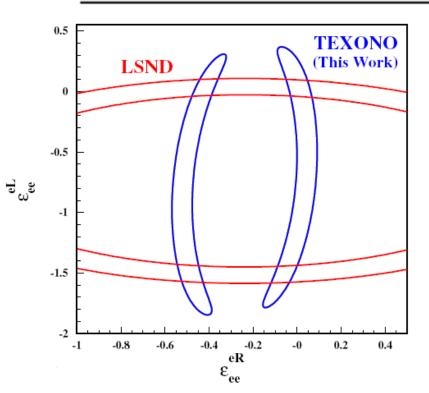
(NU) NSI: ϵ_{ee}^{eLR}

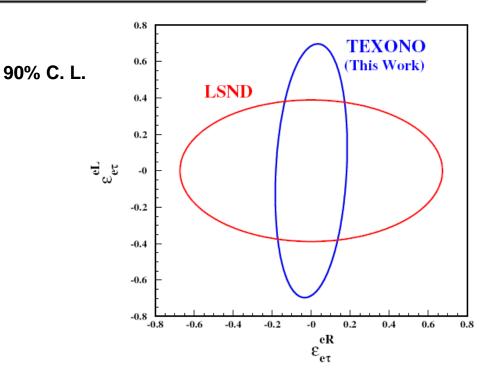
(FC) NSI: $\epsilon_{e\mu}^{eLR}$ $\epsilon_{e\tau}^{eLR}$

NSI of Neutrino


The measurable recoil spectra with typical neutrino "flux" at typical values of NSI parameters for both **NU and FC NSI**

 The NSI parameters are constrained by the accuracy of the SM crosssection measurements


$$R_{\mathcal{NP}+\mathcal{SM}} \; = \; t \; \rho_e \; \int_T \int_{E_\nu} \left(\frac{d\sigma}{dT} \right)_{\mathcal{NP}+\mathcal{SM}} \; \frac{d\phi_{(\bar{\nu_e})}}{dE_\nu} \; dE_\nu \; dT$$


$$\chi^2 = \sum_{i=1} \left[\frac{R_{\rm expt}(i) - \left[R_{\rm SM}(i) + R_X(i)\right]}{\Delta_{\rm stat}(i)} \right]^2,$$

Comparison of Bounds of NSI Parameters

	TEXONO (this work)				LSND	Combined	
NSI j	parameters	Measurement best fit	$\chi^2/\text{d.o.f.}$	Bounds	Projected		Bounds
				at 90% C.L.	sensitivities		at 90% C.L.
	$arepsilon_{ m ee}^{ m eL}$	$\epsilon_{ee}^{eL} = 0.03 \pm 0.26 \pm 0.17$	8.9/9	$-1.53 < \epsilon_{ee}^{eL}$	± 0.015	$-0.07 < \epsilon_{ee}^{eL}$	$-0.03 < \epsilon_{ee}^{eL}$
NU				< 0.38		< 0.11	< 0.08
	$arepsilon_{ m ee}^{ m eR}$	$\varepsilon_{\rm ee}^{\rm eR} = 0.02 \pm 0.04 \pm 0.02$	8.7/9	$-0.07 < \varepsilon_{\rm ee}^{\rm eR}$	±0.002	$-1.0 < \varepsilon_{\rm ee}^{\rm eR}$	$0.004 < \varepsilon_{\rm ee}^{\rm eR}$
				< 0.08		< 0.5	< 0.151
FC	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	$\varepsilon_{e\mu}^{eL^2}(\varepsilon_{e\tau}^{eL^2}) = 0.05$	8.9/9	$ \varepsilon_{\mathrm{e}\mu}^{\mathrm{eL}} < 0.84$	± 0.052		$ \varepsilon_{e\mu}^{eL} < 0.13$
	$arepsilon_{\mathrm{e} au}^{\mathrm{eL}}$	$\pm 0.27 \pm 0.24$		$ \varepsilon_{\mathrm{e}\tau}^{\mathrm{eL}} < 0.84$	± 0.052	$ \varepsilon_{\mathrm{e}\tau}^{\mathrm{eL}} < 0.4$	$ \varepsilon_{e\tau}^{eL} < 0.33$
	$\varepsilon_{\mathrm{e}\mu}^{\mathrm{eR}}$	$\varepsilon_{e\mu}^{eR^2}(\varepsilon_{e\tau}^{eR^2}) = 0.008$	8.7/9	$ \varepsilon_{e\mu}^{eR} < 0.19$	± 0.007		$ \varepsilon_{e\mu}^{eR} < 0.13$
	$arepsilon_{\mathrm{e} au}^{\mathrm{eR}}$	$\pm 0.015 \pm 0.012$		$\varepsilon_{\rm e\tau}^{\rm eR}$ < 0.19	± 0.007	$ \varepsilon_{e\tau}^{eR} < 0.7$	$0.05 < \varepsilon_{\mathrm{e}\tau}^{\mathrm{eR}} $
)			< 0.28

Unparticle Physics

The notion of unparticles is introduced by Howard Georgi. A scale invariant sector which decouples at a suffciently large energy scale exists. [Phys. Rev. Lett. 98, 221601 (2007)]

❖ The signatures of Unparticles can also be observed by reactor neutrinos by searching the effects of virtual unparticle exchange between fermionic currents.

This interaction can be either exchange of Scalar Unparticles or Vector Unparticles.

Exchange of Scalar Unparticles

$$\frac{d\sigma_{\mathcal{U}_S}}{dT} = \frac{[g_{0e}^{\alpha\beta}(d)]^2}{\Lambda^{(4d-4)}} \frac{2^{(2d-6)}}{\pi E_{\nu}^2} (m_e T)^{(2d-3)} (T + 2m_e)$$

Exchange of Vector Unparticles

$$\frac{d\sigma_{\mathcal{U}_V}}{dT} = \frac{1}{\pi} \frac{[g_{1e}^{\alpha\beta}(d)]^2}{\Lambda^{(4d-4)}} 2^{(2d-5)} (m_e)^{(2d-3)} (T)^{(2d-4)} \left[1 + \left(1 - \frac{T}{E_\nu} \right)^2 - \frac{m_e T}{E_\nu^2} \right]$$

$$\frac{d\sigma_{\mathcal{U}_V-SM}}{dT} = \frac{\sqrt{2}G_F}{\pi} \frac{g_{1e}(d)}{\Lambda^{(2d-2)}} (2m_e T)^{(d-2)} m_e \left\{ g_L + g_R \left(1 - \frac{T}{E_\nu} \right)^2 - \frac{(g_L + g_R)}{2} \frac{m_e T}{E_\nu^2} \right\}$$

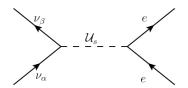
i= 0(1): Unparticle scalar/vector field

 $\lambda_0(\lambda_1)$: Scalar(Vector) unparticle couplings

f: e, u, d

 α , β : denotes neutrino flavours

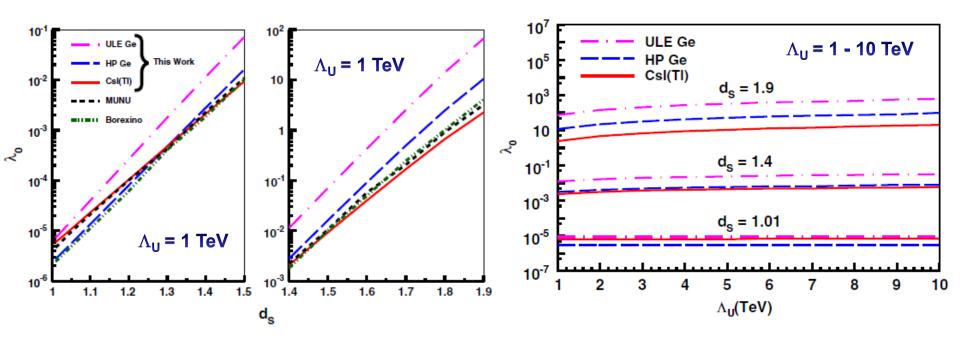
d: Unparticle mass dimension


 Λ : Unparticle energy scale

$$\lambda_0 (\lambda_1) = \sqrt{\lambda_{0\nu}^{e\beta} \lambda_{0e}} (\sqrt{\lambda_{1\nu}^{e\beta} \lambda_{1e}})$$

$$\lambda_0 (\lambda_1) = \sqrt{\lambda_{0\nu}^{e\beta} \lambda_{0e}} (\sqrt{\lambda_{1\nu}^{e\beta} \lambda_{1e}})$$

$$g_{if}^{\alpha\beta}(d) = \frac{\lambda_{i\nu}^{\alpha\beta}\lambda_{if}}{2\sin(d\pi)}A_d \qquad A_d = \frac{16\pi^{5/2}}{(2\pi)^{2d}}\frac{\Gamma(d+1/2)}{\Gamma(d-1)\Gamma(2d)}.$$


Scalar Unparticle

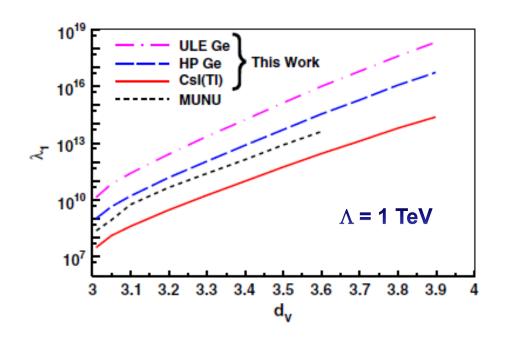
1 < d < 2

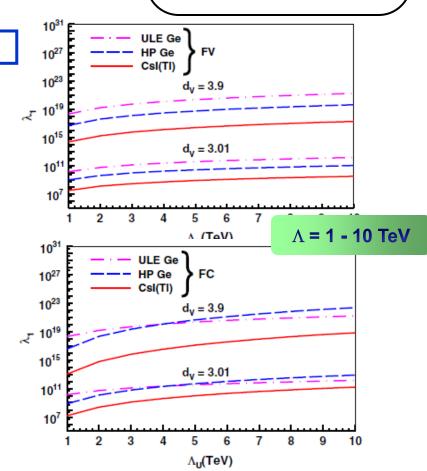
$$\frac{d\sigma_{\mathcal{U}_S}}{dT} = \frac{[g_{0e}^{\alpha\beta}(d)]^2}{\Lambda^{(4d-4)}} \frac{2^{(2d-6)}}{\pi E_{\nu}^2} (m_e T)^{(2d-3)} (T + 2m_e)$$

For the Scalar Unparticle Case for d < 1.3 number of event rate increases for lower thresholds, therefore **HPGe and ULEGe** data expected to give more sensitive results. However, for d > 1.3 **CsI** (TI) data is more sensitive to scalar unparticle.

• Since the cross sections vary as λ_0^4 the potential of placing more strict constants due to experimental sensitivities is only modest.

Vector Unparticle

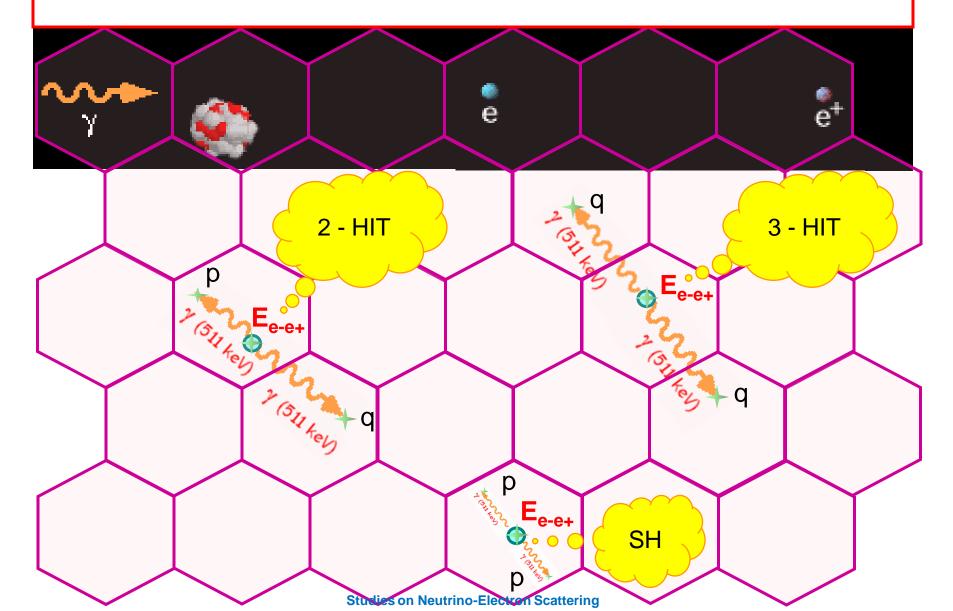

$$\frac{d\sigma_{\mathcal{U}_V}}{dT} = \frac{1}{\pi} \frac{\left[g_{1e}^{\alpha\beta}(d)\right]^2}{\Lambda^{(4d-4)}} 2^{(2d-5)} (m_e)^{(2d-3)} (T)^{(2d-4)} \left[1 + \left(1 - \frac{T}{E_\nu}\right)^2 - \frac{m_e T}{E_\nu^2}\right]$$


$$\frac{d\sigma_{\mathcal{U}_V-SM}}{dT} = \frac{\sqrt{2}G_F}{\pi} \frac{g_{1e}(d)}{\Lambda^{(2d-2)}} (2m_e T)^{(d-2)} m_e \left\{ g_L + g_R \left(1 - \frac{T}{E_\nu} \right)^2 - \frac{(g_L + g_R)}{2} \frac{m_e T}{E_\nu^2} \right\}$$

d > 3

B. Grinstein, K. A. Intriligator, and I. Z. Rothstein, Phys. Lett. B 662, 367 (2008)

both FC and FV scenario are considered and analysed


Summary

- Detector: CsI(TI) Scintillating Crystal Array (~ 200 kg)
 - Threshold: 3 MeV
- Analysis Results:
 - $\sigma(\overline{v}_e e^-)$ with ~ 25% accuracy
 - Weak Mixing Angle with ~ 15% accuracy
 - Verify SM negative interference
 - $\mu_{\bar{\nu}}$ sensitivity ~ $10^{-10} \mu_{\rm B}$
 - neutrino charge radius sensitivity ~ 10⁻³² cm²
- Probing new Physics : NSI and UP
 - Current bounds are improved over those from the previous experiments

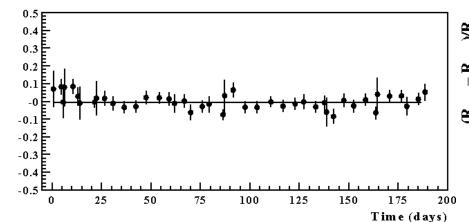
Thank YOU

Backup Slides

Background Prediction via PAIR PRODUCTION

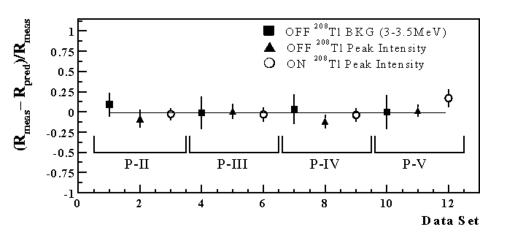
Residual Background Understanding & Suppression

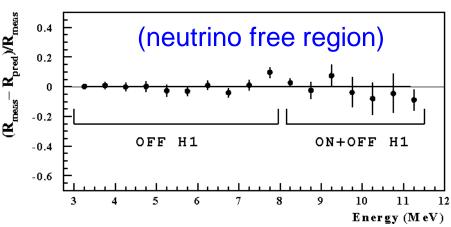
Background Sources : High Energy γ-rays & Cosmic Rays & 208TI


Idea -- Use Multiple Crystal Hit (MH) spectra to predict Single Crystal Hit (SH) Background to the neutrino events

$$\left(\frac{MH_{non\cos}}{MH_{tot}}\right)_{ON,OFF} = 1 - \varepsilon = \left(\frac{SH\left[BKG(\cos)\right]}{SH_{tot}}\right)_{ON,OFF}$$

$$\frac{SH[BKG(2614+583)]}{MH[2614;583(data)]} = \frac{SH[2614+583(MC)]}{MH[2614;583(MC)]}$$


Systematic Uncertainties Approach - Use non-v events for demonstration



 $(\mathbf{R}_{\mathrm{meas}} - \mathbf{R}_{\mathrm{ave}}) / \mathbf{R}_{\mathrm{ave}}$

²⁰⁸TI (SH) Prediction

BKG - Pred.

ON-OFF Stability < ~0.5%

- Random trigger events for DAQ & Selection Cuts
- Stability of TI-208 (2614 keV) peak events

Cosmic Induced BKG(SH) Prediction < ~1 %

Successfully **Predict Cosmic BKG** in **NEUTRINO FREE REGION**

TI-208 Induced BKG(SH) Prediction <~3%

- Successfully Predict TI-208 Induced BKG(SH) >3MeV at Reactor OFF periods
- Successfully **Predict TI-208** peak intensity for both Reactor **ON/OFF** with the same tools **(MC)**

Systematic Uncertainties

Summary of the sources of systematic errors and their contributions to the measurement uncertainties.

Sources	$\delta_{\rm sys}({\rm Source})$	$\Delta_{ m sys}(\xi)$
Signal strength:		
Φ_{ν} Evaluation	<3%	< 0.03
Efficiencies for neutrino events	<1.3%	< 0.013
Fiducial target mass	<4%	< 0.04
* Combined (signal)	-	< 0.052
Background subtraction:		
Reactor OFF measurement	< 0.4%	< 0.06
Background evaluation		
OH1(CRV; Tl _ν)	<3%	< 0.08
\odot H1(CRV; μ) + H1(CRV; μ)	<1%	< 0.17
Net	-	< 0.19
* Combined (background)	-	< 0.15
Total		< 0.16