Measurement of the Charge Asymmetry in Top Quark Pair Production in pp Collisions at 7 Tev using the CMS Detector

Amanda Deisher for the CMS Collaboration

2011 Europhysics Conference on High-Energy Physics 21 July 2011

- Standard Model: Interference of leading order and box diagram (left) and initial and final state radiation diagrams (right) lead to small charge asymmetry in quark-antiquark annihilation mode
- Beyond standard model: axigluons, Z', W', Kaluza Klein
 - New resonances s-channel production in M(tt) not necessarily visible
 - Different couplings might lead to changes in their angular distributions
 - Charge asymmetry would be sensitive to t- and u-channel exchange

Charge asymmetry in ttbar events

Asymmetric initial state

top in direction of proton(quark) anti-top in direction of antiproton

- SM Theory: ~5% [Kühn, Rodrigo]
- CDF measures $A_C(y) 2\sigma$ larger than SM pred.
 - \Rightarrow +3.4 σ for M_{tt} > 450 GeV/ c^2

Phys. Rev. D 83, 112003 (2011)

Symmetric initial state

quark is usually valence (higher p) anti-quark is usually a sea quark

- SM Theory: 1.3% (η) and 1.1% (y) [Kühn, Rodrigo]
- CMS 36 pb⁻¹: CMS-PAS-10-010

 $A_{C}(\eta) = 0.060 \pm 0.134 \text{ (stat)} \pm 0.026 \text{ (syst)}$

• Today: Update to 1.09 fb⁻¹

Amanda Deisher - (CMS)

Reconstructing ttbar decays

- Event signature: one leptonic decay, one hadronic decay
 - Require I high $p_T e$ or μ , ≥ 4 jets, and \geq one b-tag
 - Additional loose lepton veto, conversion rejection
- Important to fully and correctly reconstruct the 4 momentum of the top quarks
- For the neutrino
 - $p_x(v)$ and $p_y(v)$ from missing E_T
 - constrain W mass to 80.4 GeV
- Want to pick the best possible assignment of jets (with 4 jets, there are 12 combinations to consider)
 - Simulation: define "best possible" as best angular match for $W_{had}, W_{lep}, t_{had},$ and t_{lep}
 - Data: rank the hypotheses according to a likelihood (testing method on simulation)

Hypothesis Selection

Choose hypothesis with maximum

 $\psi = L(m_1)L(m_2)L(m_3)P_b(x_{b,lep})P_b(x_{b,had})(1 - P_b(x_{q1}))(1 - P_b(x_{q2}))$

- Consider the masses of the hadronic W and both tops
 - $m_{V,had}$ and $m_{t,had}$ are highly correlated
 - $m_{t,lep}$, $m_{V,had}$, and $m_{t,had} \rightarrow m_1$, m_2 , and m_3

- B tagging output is used to improve jet assignment
- Performance in MC
 - finds best possible hypothesis in 29% of all events
 - when all 4 final state jets are present, it's 51%

Background Estimation (1)

• The main background in lepton+jets ttbar sample

W+jets, Z+Jets, Single Top, QCD

 Divide the data into 8 samples for simultaneous fit

leptons and charge: μ^+ , μ^- , e^+ , e^-

missing E_T : MET<40 GeV , MET>40 GeV

- For MET<40 GeV samples, fit MET
- For MET>40 GeV samples, fit invariant mass of three jets with largest vectoral ΣpT (M3)
- MC templates for all channels except QCD
 - QCD: data with non-isolated lepton

μ +jet Missing E_T Shapes

Background Estimation (2)

Event Yields

process	electron+jets	muon+jets	total
tī	4401 ± 165	5835 ± 199	10236 ± 258
single top $(t + tW)$	213 ± 58	293 ± 81	507 ± 99
W ⁺ +jets	313 ± 84	404 ± 106	718 ± 135
W ⁻ +jets	299 ± 90	245 ± 109	544 ± 141
Z+jets	81 ± 24	85 ± 26	165 ± 35
QCD	355 ± 71	232 ± 79	587 ± 106
total fit result	5663 ± 226	7094 ± 276	12757 ± 357
observed data	5665	7092	12757

- Excellent agreement between fit and data
- Largest background is W+jets
- Background estimation
 - → background subtractions

Amanda Deisher - (CMS)

Raw Asymmetry

- Raw asymmetry for both variables <1%
- Effects between true asymmetry and raw asymmetry
 - selection efficiency (true ttbar \rightarrow true selected ttbar)
 - imperfect reconstruction (true selected \rightarrow reconstructed ttbar)
 - background contribution (ttbar \rightarrow all data)
- Need to **unfold** the distributions to compare with theory

Amanda Deisher - (CMS)

Unfolding the raw asymmetry

- Smearing matrix A translates true spectrum x into measured spectrum w
- A is factorizable:
 - Migration effects due to imperfect reconstruction
 - non perfect jet-parton assignment
 - detector resolution
 - Selection effects
 - selection efficiency not flat as a function of η and y
 - Ex: our 4 jet selection enriches ISR/FSR \rightarrow changes asymmetry
- Solve the equation using regularized unfolding technique

Unfolding consistency check

- We use pseudo experiments (PEs) to test the performance of the unfolding algorithm.
 - The "data" for a single PE is drawn from the ttbar and background templates and then unfolded.
 - 50,000 PEs per study
- A_C pull distribution are gaussian and centered: no bias in unfolding
- Linearity check: test if large values of A_C would be unfolded correctly

Systematic uncertainties

- A_C is insensitive to absolute normalization effects such as luminosity and overall ttbar efficiency and acceptance
- Pseudo data is also used to evaluate systematics uncertainties from source that could generate relative uncertainties
 - create pseudo data from systematically shifted distributions

	A_C^{η}		A_C^y	
Source of Systematic	- Variation	+ Variation	- Variation	+ Variation
JES	-0.003	0.000	-0.007	0.000
JER	-0.002	0.000	-0.001	0.001
Q^2 scale	-0.014	0.000	-0.013	+0.003
ISR/FSR	-0.006	+0.003	0.000	+0.024
Matching threshold	-0.006	0.000	-0.013	+0.006
PDF	-0.001	+0.001	-0.001	+0.001
b tagging	-0.001	+0.003	0.000	0.001
Lepton ID/sel. efficiency	-0.002	+0.004	-0.002	0.003
QCD model	-0.008	+0.008	-0.006	+0.006
Pileup	-0.002	+0.002	0.000	0.000
Overall	-0.019	+0.010	-0.021	+0.026

TTbar Charge Asymmetry Results

Unfolded $\Delta |\eta|$

Unfolded $\Delta(y^2)$

Both unfolded measurements are in agreement with theory predictions

 $A^{\eta}_{C}(theory) = 0.013 \pm 0.001 \qquad A^{y}_{C}(theory) = 0.011 \pm 0.001 \quad \text{[Rodrigo]}$

Amanda Deisher - (CMS)

- Background subtracted (but not unfolded) A_C as a function of M(tt)
- Results so far are consistent with standard model expectations
- Next step: 2D unfolding in $\Delta|\eta|$ or $\Delta(y^2)$ and M(tt) to get unfolded A_C as a function of M(tt)

Amanda Deisher - (CMS)

Summary

- Charge asymmetry in ttbar production can provide a window into new physics at electroweak scale
- CMS has updated the A_C measurement with 1.09 fb⁻¹ of data using two different variables
- Both (slightly) negative asymmetries are compatible with the standard model predictions of ~1%
- Also compatible with Tevatron positive asymmetry measurements
 - Still room for new physics!
- Looking forward to future A_C measurements
 - with smaller statistical uncertainties
 - and mapping M(tt) dependence

Back-up slides

Analysis cuts

Muon Definition

- pT > 20 GeV
- |η| < 2.I
- χ^2 global fit < 10
- $N_{trk-hits} > 10$
- IP < 0.02 cm
- $|z(\mu)-z(PV)| < 1 \text{ cm}$
- PF rellso < 0.125

Jet Definition

- anti KT PF jets
- pT > 30 GeV
- |η| < 2.4
- Particle Flow Jet ID

Electron Definition

- ET > 30 GeV
- |η| < 2.5 [1.442,1.5660]
- electron ID
- IP < 0.02 cm
- $|z(\mu)-z(PV)| < 1 \text{ cm}$
- PF rellso < 0.125

Loose Muon

- pT > 10 GeV
- |η| < 2.5
- PF rellso <0.25

Loose Electron

- pT > 15 GeV
- PF rellso <0.25

Amanda Deisher - (CMS)

CMS: The Compact Muon Solenoid

•For reconstruction, we use particle flow

- global perspective on reconstruction
- sub-dectector object \rightarrow CMS wide object
- effectively handles overlap (double counting) in muon/electron/jet collections

Top Production and Decay - 21 July 2011

Statistical Uncertainty

$$A_C = \frac{N^+ - N^-}{N^+ + N^-}$$

The statistical uncertainty can be calculated from the output of the unfolding procedure as follows:

$$\sigma_{A_{C/DC}}^{2} = \left(\frac{\partial A_{C/DC}}{\partial N_{1}} \dots \frac{\partial A_{C/DC}}{\partial N_{6}}\right) V_{x} \begin{pmatrix} \frac{\partial A_{C/DC}}{\partial N_{1}} \\ \vdots \\ \frac{\partial A_{C/DC}}{\partial N_{6}} \end{pmatrix}$$

where the partial derivatives are given by

$$\frac{\partial A_{C/DC}}{\partial N_i} = \frac{-2N^+}{(N^+ + N^-)^2} \quad \text{for } i = 1...3$$

$$\frac{\partial A_{C/DC}}{\partial N_i} = \frac{2N^-}{(N^+ + N^-)^2} \quad \text{for } i = 4\dots6$$

Amanda Deisher - (CMS)

Pull distributions for AC

Template Shapes

Amanda Deisher - (CMS)

$$\left(\begin{array}{c} m_1 \\ m_2 \\ m_3 \end{array}\right) = \left(\begin{array}{ccc} 1.00 & -0.07 & -0.01 \\ 0.07 & 0.93 & 0.36 \\ -0.02 & -0.36 & 0.93 \end{array}\right) \left(\begin{array}{c} m_{t,lep} \\ m_{t,had} \\ m_{W,had} \end{array}\right)$$

$$\sum \Delta R = \Delta R(p_{W_{lep}^{rec}}, p_{W_{lep}^{gen}}) + \Delta R(p_{W_{had}^{rec}}, p_{W_{had}^{gen}}) + \Delta R(p_{t_{lep}^{rec}}, p_{t_{lep}^{gen}}) + \Delta R(p_{t_{had}^{rec}}, p_{t_{had}^{gen}}) + \Delta R(p_{t_{had}^{gen}}, p_{t_{had}^{gen}}) + \Delta R(p_{t_{ha$$

Amanda Deisher - (CMS)