

Combined results on SM Higgs Search with the CMS Detector

CMS Collaboration

Combination scope

channel	mass range	luminosity	number of	type
	(GeV/c^2)	(fb^{-1})	sub-channels	of analysis
$H \rightarrow \gamma \gamma$	110-140	1.1	8	mass shape (unbinned)
$H \rightarrow \tau \tau$	110-140	1.1	6	mass shape (binned)
$H \rightarrow WW \rightarrow 2\ell 2\nu$	110-600	1.1	5	MVA (binned); cut&count
$H \rightarrow ZZ \rightarrow 4\ell$	110-600	1.1	3	mass shape (unbinned)
$H \rightarrow ZZ \rightarrow 2\ell 2\nu$	250-600	1.1	2	cut&count
$H \rightarrow ZZ \rightarrow 2\ell 2q$	226-600	1.0	6	mass shape (unbinned)
TOTAL (6)	110-600	1.0-1.1	30	

- 143 m_H-points for combination in the 110 – 600 GeV mass range
- 6 analyses with a wide range of strategies
- 30 exclusive sub-channels in combination
- 142 nuisance parameters, majority of which affect more than one sub-channel

Two slides on statistics: limits

Pursue <u>both</u> frequentist and Bayesian paradigms, which allows us to validate robustness of results...

CL_s (exact formulation as agreed with ATLAS, details are in backup)

$$\mathsf{CL}_{\mathsf{s}} = \frac{P\left(q_{\mu} \ge q_{\mu}^{obs} \mid \mu s(\hat{\theta}_{\mu}^{obs}) + b(\hat{\theta}_{\mu}^{obs})\right)}{P\left(q_{\mu} \ge q_{\mu}^{obs} \mid b(\hat{\theta}_{0}^{obs})\right)} = 0.05$$

- Bayesian (with flat prior on signal strength)

$$\int_{0}^{\mu_{95\%CL}} p(\mu \,|\, \text{data}) \,\, d\mu \,\,=\,\, 0.95$$

Two slides on statistics: excess

test statistic – profile likelihood

$$q_0 = -2\ln \frac{\mathcal{L}(\text{data}|0,\hat{\theta}_0)}{\mathcal{L}(\text{data}|\hat{\mu},\hat{\theta})} \quad \text{and } \hat{\mu} \ge 0$$

"local" p-values – from asymptotic approximation

$$\tilde{p} = \frac{1}{2} \left[1 - \text{erf} \left(\sqrt{q_0^{\text{obs}}/2} \right) \right]$$

IMPORTANT:

Test Statistic q

- small "local" p-value means one has a local excess w.r.t. expectations
- it does not tell us whether the excess is due to a signal or not
- nor does it tell us whether the excess is consistent with THE expected signal
- moreover, one must be ware of a potentially large look-elsewhere effect (LEE) that can considerably de-rate "significance" of the minimal p-value found in a search involving scans over a broad phase space with a good "local" resolution

- Summary of results obtained by six analyses entering the combination
- Features seen in the individual analyses will manifest themselves in the combination

Low mass range: $H \rightarrow \gamma\gamma$

- unbinned m_{yy} distributions in 8 event categories
- observed exclusion: $2-7 \times \sigma_{\text{SM}}$
 - variations are within ±2σ statistical bands
 - correlation "length" agrees with the instrumental mass resolution

no significant excess of events:

- two bumps with local p-values 3-4% (<2 σ)
- LEE: probability to observe a 2σ-excess for background-only hypothesis is ~60%
- two bumps would require ~ $3 \times \sigma_{SM}$ cross section

Low mass range: $H \rightarrow \tau\tau$

- binned m_{vis} distributions in 6 exclusive final states
- observed exclusion: ~10 $\times\,\sigma_{\text{SM}}$
 - observed ≈ expected
 - shape is rather featureless,
 due to the broad m_π resolution
- no significant excess:
 - LEE trial factor ~ 1

Andrey Korytov (UF) - EPS 2011 Grenoble

High mass range: $H \rightarrow ZZ \rightarrow 2I2v$

- cut-and-count with sliding cuts(m_H) in two event categories
- observed exclusion: $1-4 \times \sigma_{SM}$
 - variations are within ±2σ statistical bands
 - correlation "length" agrees with the "effective" m_H mass window size of 50 (200) GeV at low (high) Higgs mass

no significant excess of events:

- one bump at $m_H \sim 290$ with local p-values $\sim 1\%$
- the bump would require ~ $2 \times \sigma_{\text{SM}}$ cross section

High mass range: $H \rightarrow ZZ \rightarrow 2l2q$

- unbinned m_{2l2j} analysis in six event categories
- observed exclusion: $2-10 \times \sigma_{\text{SM}}$
 - variations are within ±2σ statistical bands
 - correlation "length" agrees with the "effective" m_{zz} peak width of 3% (6%) at 250 (500) GeV Higgs mass

no significant excess of events:

- three bumps with local p-values ~1-5%
- the two smallest p-value bumps would require
 - ~ 4× σ_{SM} cross section

Higgs boson mass (GeV/c²)

Full mass range: $H \rightarrow WW \rightarrow 2I2v$

- binned MVA-output shape analysis in 4 event categories + 1 cut-and-count analysis
- very poor mass resolution
- observed exclusion: m_H=1!
- m_H=150-193 GeV for SM H
 - at low masses <200 GeV, the limits are not as strong as expected for bkgd-only and show a broad +2σ deviation
 - at high masses >200 GeV, observation ≈ expectation
- correlation "length" at low m_H is ±30 GeV
 - deviations, whether due to bkgd fluctuations or signal, will always appear as flattish shifts up/down
- observed some excess of events:
 - broad ~2σ excess at low masses
 - LEE: ~O(3); hence, the excess is approximately as unlikely as it appears (a few %, can happen)
 - The bets-fit values of σ/σ_{SM} disfavor a SM Higgs signal explanation in the < 120 and > 150 GeV/c²

Full mass range: $H \rightarrow ZZ \rightarrow 4I$

- unbinned m₄₁ analysis in three event categories
- observed exclusion: $1-100 \times \sigma_{SM}$
 - variations are within ±2σ statistical bands
 - correlation "length" agrees with the "effective" m_{zz} peak width

observed some excess of events

- Wiggles in p-value follow individual events; p-value ~ 0.01
- LEE~O(100) and washes out significance of excesses
- Two pairs of events at m_H~120 and ~160 GeV would imply too large signal CS, one pair around m_H~140 GeV would not be inconsistent with a signal—but the statistical precision of these assessments is very poor.

Andrey Korytov (UF) - EPS 2011 Grenoble

Combination

- Six analyses:
 - only one reached exclusion sensitivity [130-200]
 - all analyses have up and down wiggles vs m_H
- Next step is combination...

Combination: 95% CL limit on σ/σ_{SM}

- At low mass, the excess is driven by $H \rightarrow WW$, with a little boost from $H \rightarrow ZZ \rightarrow 4I$
- Remarkable agreement between CL_s and Bayesian approaches: 0.3±4.6%
- Step-like structure is due to m_H -discreteness in the H \rightarrow WW analysis
- The range [200-300] GeV is just below the line of expected exclusion at 95% C.L.

Combination: CL_s value

Excluded at 95% CL (GeV) [149-206] ... [300-440] and 3 short segments in between

Excluded at 90% CL [145-480] GeV

Combination: interplay of six analyses

- At high masses, the combination gives a large gain over all individual analyses
- At very low mass, excess in the H→WW analysis makes combination equal or even more conservative than the H→γγ search would imply on its own

Local p-value and best-fit σ/σ_{SM}

- RECALL: Small p-value means an excess. It does NOT tell us whether this is a signal or not, NOR does it say if the excess is consistent with the expected signal
- The origin of the overall structure:
 - the broad ~2 σ excess comes mostly from H \rightarrow WW
 - $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow \gamma \gamma$, subject to large LEE, add some structure on top of the H
- LEE effect for the combination is not yet determined; individual channels entering the combination have LEE from O(1) to O(100)

Reinterpretation for SM4 Higgs

If there are 4 fermion generations, the SM4 Higgs boson is excluded in the 120-600 GeV mass range at 95% CL

Combination summary

- SM Higgs boson
 - Excluded at 95% C.L. in two regions 149-206 and 300-440 GeV, and a few segments in between
 - Excluded at 90% C.L. from 145-480 GeV
- SM4 Higgs boson
 - Excluded at 95% C.L. from 120-600 GeV
- Disentangling the source(s) of some event excesses in low mass analyses will require more data, which are rapidly coming

Backup

Model for systematic errors (1)

uncertainty --> nuisance parameter θ , whose best estimate is θ **Bayesian** declares his degree of believe on the true value of nuisance θ : $\rho(\theta | \tilde{\theta})$ **frequentist** wants to know pdf of "measuring" $\tilde{\theta}$, should nuisance be θ : $p(\tilde{\theta} | \theta)$

Two paradigms can be connected via Bayes' theorem:

$ \rho(\theta \theta) \sim p(\theta \theta) \cdot \pi_{\theta}(\theta) $						
	posterior as a prior for Bayesian analysis	"measurement" PDF for frequentist analysis	mordial t prior			
Type of syst. error	posterior $\rho(\theta \tilde{\theta})$	frequentist $p(\tilde{\theta} \mid \theta)$	prior $\pi_{\theta}(\theta)$	Typical examples		
Unconstrained	flat	flat	flat	Gaussian: $b = b_0 (1 + \varepsilon \theta)$		
Gaussian, Lognormal	$\rho(\theta \tilde{\theta}) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\theta - \tilde{\theta})^2}{2}\right)$	$p(\tilde{\theta} \mid \theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\tilde{\theta}-\theta)^2}{2}\right)$	flat	Lognormal: $b = b_0 \kappa^{\theta}$		
Statistical	$ \rho(\theta \mid N) = \frac{\theta^N}{N!} \exp(-\theta) $	$p(N \mid \theta) = \frac{\theta^N}{N!} \exp(-\theta)$	flat	Statistical: $b = \alpha \times \theta$		

All uncertainties are broken into independent sources

- each independent source gets assigned its own independent nuisance
- one source can affect more than one observable: 100% correlated
- effect strengths are not necessarily equal: $\varepsilon_1 \neq \varepsilon_2$ or $\kappa_1 \neq \kappa_2$
- correlations are either positive or negative: ($\epsilon_1 > 0$, $\epsilon_2 < 0$) or ($\kappa_1 > 1$, $\kappa_2 < 1$)

Limits: Bayesian paradigm

Posterior on signal strength μ

- using flat prior
- marginalization of nuisance parameters

$$p(\mu | \text{data}) = \frac{1}{C} \int_{\theta} p(\text{data} | \mu s(\theta) + b(\theta)) \rho_{\theta}(\theta) \underline{\pi_{\mu}(\mu)} d\theta.$$

Limits: modified frequentist CL_s

CL_s definitions are agreed on with ATLAS \rightarrow Feel free to compare results

Pure frequentist. Aided by Bayes' theorem, all systematic errors are "measurements"

Likelihood

 $\mathcal{L}(\text{data} \mid \mu, \theta) = \text{Poisson} \left(\text{data} \mid \mu \cdot s(\theta) + b(\theta) \right) \cdot p(\tilde{\theta} \mid \theta)$

Test statistic

$$\widetilde{q}_{\mu} = -2\ln \frac{\mathcal{L}(\text{data}|\mu, \hat{\theta}_{\mu})}{\mathcal{L}(\text{data}|\hat{\mu}, \hat{\theta})}, \quad \text{with a constraint } 0 \le \widehat{\mu} \le \mu$$

Pseudo-data (toys)

- fit data to find two best sets of nuisances $\hat{\theta}_0^{obs}$ and $\hat{\theta}_{\mu}^{obs}$
- prepare sampling distributions of test statistics
 - bkgd-only pseudo-data: (data, $\tilde{\theta}$) for $b(\hat{\theta}_0^{obs})$
 - signal+bkgd pseudo-data: (data, $\tilde{\theta}$) for $\mu s(\hat{\theta}_{\mu}^{obs}) + b(\hat{\theta}_{\mu}^{obs})$

Define

$$\mathsf{CL}_{\mathsf{s}} = \frac{P\left(q_{\mu} \ge q_{\mu}^{obs} \mid \mu s(\hat{\theta}_{\mu}^{obs}) + b(\hat{\theta}_{\mu}^{obs})\right)}{P\left(q_{\mu} \ge q_{\mu}^{obs} \mid b(\hat{\theta}_{0}^{obs})\right)}$$

Andrey Korytov (UF) - EPS 2011 Grenoble

Limits: modified frequentist CL_s

Likelihood

$$\mathcal{L}(\text{data} \mid \mu, \theta) = \text{Poisson} \left(\text{data} \mid \mu \cdot s(\theta) + b(\theta) \right) \cdot p(\tilde{\theta} \mid \theta)$$

• Test statistics

$$\tilde{q}_{\mu} = -2\ln\frac{\mathcal{L}(\mathrm{data}|\mu,\hat{\theta}_{\mu})}{\mathcal{L}(\mathrm{data}|\hat{\mu},\hat{\theta})}, \quad \text{with a constraint } 0 \le \hat{\mu} \le \mu$$

Pseudo-data (toys)

- fit data to find two best sets of nuisances $\hat{ heta}_0^{obs}$ and $\hat{ heta}_\mu^{obs}$
- prepare sampling distributions of test statistics
 - bkgd-only pseudo-data: $(data, \tilde{\theta})$ for $b(\hat{\theta}_0^{obs})$
 - signal+bkgd pseudo-data: (data, $\tilde{\theta}$) for $\mu s(\hat{\theta}_{\mu}^{obs}) + b(\hat{\theta}_{\mu}^{obs})$

• **Define**
$$\mathsf{CL}_{\mathsf{s}} = \frac{P\left(q_{\mu} \ge q_{\mu}^{obs} \mid \mu s(\hat{\theta}_{\mu}^{obs}) + b(\hat{\theta}_{\mu}^{obs})\right)}{P\left(q_{\mu} \ge q_{\mu}^{obs} \mid b(\hat{\theta}_{0}^{obs})\right)}$$

LEP did not use syst. error pdf's in Likelihood TEV puts in $\rho(\theta|\tilde{\theta})$, = $p(\tilde{\theta} \mid \theta)$ for pdf's we use

LEP and TEV, fix μ =0 in the denominator

LEP does not profile nuisance (there aren't any)

TEV does profile for nuisances

TEV/LEP use $\tilde{\theta}$ to generate θ and then generate pseudo-data using new s(θ) and b(θ), which is explicitly Bayesian

Visually, sampling distributions are very different from LEP/TEV Numerically, results obtained by tossing pseudo-data are very similar

Quantifying an excess

"local" significance Z: one-sided normal distribution tail convention

$$p = \int_Z^\infty \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) \, dx$$

look-elsewhere effect is straightforward for simple background models, but not for their combination

LHC/TEV partonic luminosities

SM Higgs at Tevatron

What is SM4 Higgs?

ggH: top-quark loop is a dominant process and is almost quark-mass independent

- quark-Higgs coupling is ~m_q
- "kinematic" penalty for a heavy quark in the loop is $^1/m_q$
- around m_H ~ 2m_{top}, CS has "resonant" enhancement

One more generation implies 2 additional quarks

- ggH gets a factor of 3 enhancement in ME (t + t' + b') and, hence, a factor of 9 in the cross-section
- around $m_{\rm H} \sim 2m_{\rm top}$, "the top-quark resonant" piece obviously does not get enhanced, and the overall ratio of $\sigma_{\rm SM4} / \sigma_{\rm SM}$ is smaller than a factor of 9

NOTE1: VBF, VH, ttH production do not get any enhancements

NOTE2: Decays going via loop diagrams are also affected

- $-\Gamma(gg)$ becomes larger (additional quarks in the loop)
- $-\Gamma(\gamma\gamma)$ becomes smaller (cancellation between q and W loops)

NOTE3: SM4 with heavy Higgs does not contradict precision EWK measurements

Andrey Korytov (UF) - EPS 2011 Grenoble

SM Higgs: production & decays

Cross sections, branching ratios, and their errors are prepared by the LHC Higgs Cross Section group

Inter-analysis correlated nuisances

Table 2: Correlated systematic errors in the analyses contributing to the combination.

group	nuisance	comments
cross section	gg	$gg \rightarrow H, t\bar{t}H, VQQ, t\bar{t}, tW, tb$ (s-channel), $gg \rightarrow VV$
(pdf)	qqbar	$VBF H, VH, V, VV, \gamma\gamma$
	ggH	total inclusive $gg \rightarrow H$
	ggH1in	inclusive $gg/qg \rightarrow H+ \geq 1$ jets
	ggH2in	inclusive $gg/qg \rightarrow H+ \geq 2$ jets
	qqH	VBF H
cross section	VH	associate VH
(QCD scales)	ttH	tTH
	VV	WW, WZ, and ZZ up to NLO
	ggVV	$gg \rightarrow WW$ and $gg \rightarrow ZZ$
phenomenology	UE & PS	modeling of underlying event (UE) and parton showering (PS)
luminosity	lumi	uncertainties in luminosity
	muon	prompt muon efficiency (includes reconstruction, isolation)
efficiencies	electron	prompt electron efficiency (includes reconstruction, isolation)
	tau	reconstruction efficiency of prompt hadronicly decaying tau
	b-tag	b-tag efficiency for b-jets (anti-correlated with b-jet veto)
	muon	prompt muon <i>p</i> _T -scale error
p_T scales	electron	prompt electron p_T -scale error
	tau	p_T scale error for prompt hadronicly decaying tau
	jets	jet energy scale error
p_T resolutions	electron	prompt electron p_T -resolution error
fake rates	lepton	systematic errors associated with determination of fake lepton rates in data
trigger	muon	prompt muon efficiency (includes trigger, reconstruction, isolation)
efficiencies	electron	prompt electron efficiency (includes trigger, reconstruction, isolation)

4l events

CN

Andrey Korytov (UF) - EPS 2011 Grenoble

H→WW MVA outputs

Andrey Korytov (UF) - EPS 2011 Grenoble