A SEARCH FOR THE HIGGS BOSON IN THE CHANNEL H $\rightarrow \gamma\gamma$ with CMS

Daniele del Re Universita' "Sapienza" & INFN Rome on behalf of the CMS collaboration

$H \rightarrow \gamma \gamma$

- light Higgs favored by precision electroweak tests
- H→γγ one of the most sensitive channels at low masses despite the small branching ratio
 - striking signature (two photons, peak in invariant mass)
- very interesting channel in models where Higgs is fermiophobic
 - high branching ratio for di-photon decay
 - exclusion/discovery with O(fb⁻¹)

ELECTROMAGNETIC CALORIMETER (ECAL)

- discovery potential dependent on di-photon invariant mass resolution
 - ➡ excellent performance of em crystal calorimeter (ECAL) needed
- design energy resolution of ECAL ~0.5% for $E(\gamma) > 100GeV$ (for unconverted γ in barrel) Crystals in a supermodule
- critical issues:
- C transparency loss due to radiation damage use of laser monitoring C on-site energy calibration use of π⁰→γγ, E_e/p_e, Z→e⁺e⁻

Supercrystals

ANALYSIS STRATEGY

STEP	CRITICAL ISSUES
1) two isolated photons with large transverse momentum p _T (1γ)>40GeV, p _T (2γ)>30GeV η <1.444 1.566< η <2.5	 tight isolation to reject γ+jet and QCD background determine efficiency from data
2) di-photon mass reconstruction	 vertex determination in presence of pile-up (PU) energy scale and resolution calibration
3) signal extraction	 event categories to maximize sensitivity background shape

BACKGROUND REJECTION

- **photon isolation** variables evaluated within a cone of $\sqrt{\Delta \eta^2} + \Delta \phi^2 = 0.3 0.4$ to reject γ +jet and QCD background
 - based on Σp_{Ttrk}, energy deposited in em and hadronic calorimeters.
 Corrected for PU via subtraction of PU energy density
- lepton veto
- cluster shape in ECAL to reject $\pi^0 \rightarrow \gamma \gamma$ (using spread along η) and conversions (use of R9 = $E_{3x3crys}/E_{cluster}$)
- all above combined in barrel/endcap and large/small R9 classes

SELECTION EFFICIENCY

photon ID and trigger efficiency is determined from data control samples

1) **Z→e⁺e⁻ with tag and probe**:

- one electron selected with tight ele-ID (tag), other used to measure trigger and offline selection efficiency (probe)
- cannot be used to measure ele. veto

2) **Ζ→μ⁺μ⁻γ**:

- select muons and photon (w/o electron veto) to make Z mass
- use γ to derive electron veto efficiency

VERTEX DETERMINATION

- "large" pile-up conditions
 □ <
 N_{PU}>~5.6
- di-photon invariant mass resolution affected by vertex choice
- vextex determination based on
 - tracks belonging to vertex combined
 with di-photon kinematics
 - use of $\Sigma p_T^2_{trk}$ and p_T balancing
 - conversion-track finding and projection on beam spot
- performance **cross-checked using** $Z \rightarrow \mu^+ \mu^-$ after removing muon tracks

PHOTON ENERGY SCALE AND RESOLUTION

Z→e⁺e⁻ invariant mass to determine energy scale and resolution

- done in each different photon categories (barrel/endcap, large/small R9)
- maximum likelihood analysis performed while modifying energy
- photon energy smeared on MC to match data

CATEGORIES AND LIMIT EXTRACTION

event categories to:

- maximize statistical power
- exploit differences in kinematics between signal and backgrounds

• 8 categories:

- limit is extracted with two methods giving consistent results
 - modified frequentist approach (CLs) using profile likelihood
 - bayesian approach with flat prior
- **signal from MC** after energy smearing (see previous slide)
- bkg is fitted with 2nd order Bernstein poly. (100GeV<M_{γγ}<150GeV)

Systematics

Source	Systematics				
applicable to individual photons					
Photon identification efficiency	1.0% ÷ 4.0%				
R9 cut efficiency	4.0% ÷ 6.5%				
Energy resolution	0.2% ÷ 0.5%				
Energy scale	0.05% ÷ 0.34%				
applicable to di-p	hotons				
Integrated luminosity	6.0%				
Trigger efficiency	1.0%				
Vertex finding efficiency	0.5%				
pT>40GeV cut efficiency	6.0%				
cross sections and branching ratios					
Gluon-gluon cross section	12.5%(scale) 7.9%(PDF)				
Fermiophobic: scale	0.5%(VBF) 0.8%(WH) 1.6%(ZH)				
Fermiophobic: PDF	3.1%				
Fermiophobic: BR	5.0%				

M_{YY} Spectrum

- with 1.09fb⁻¹ no striking structure seen
- good agreement with expected MC background shape and normalization

Examples of bkg fit in categories

EXCLUSION PLOTS: SM HIGGS

Exclusion (@95% CL) 0.06 pb < σ×BR < 0.26 pb

- -×2 ÷ ×6 SM for 110 GeV < m(H) < 135 GeV</p>
- observed limit within 2σ from expected value

EXCLUSION PLOTS: FERMIOPHOBIC

Exclusion (@95% CL) 0.04 pb < σ×BR < 0.18 pb

- -m(H) > 111 GeV constraint for fermiophobic Higgs
- observed limit within 2σ from expected value

- Search for H→γγ performed with 1.09fb⁻¹:
 - stringent photon isolation criteria corrected for PU energy
 - -vertex determination based on topology and conversions
 - photon energy scale and resolution determined from data
 - event categories according to mass resolution and S/B to maximize sensitivity
- Exclusion limits (@95% CL):
 - σ×BR between ×2 and ×6 SM for 110 GeV < m(H) < 135 GeV
 - -m(H) > 111 GeV constraint for fermiophobic Higgs
- Perspectives:
 - improve energy calibration to fully exploit ECAL potential and increase Higgs discovery reach
 CMS PAS HIG-11-010

PILEUP RE-WEIGHTING

- re-weighting applied on the number of in-time PU events according to the number of expected number of interactions in data
- consistently applied when deriving efficiencies and resolutions
- average PU conditions: $- \langle N_{PU} \rangle = 5.6 \sigma_z = 5.8 \text{ cm}$

VERTEX ID: VARIABLES

• Sum
$$p_T^2 = \sum_{tracks} p_T^2$$

•
$$\mathbf{p}_{\mathsf{T}}^{\mathsf{asym}} = \left(\sum_{tracks} p_{T} - p_{T}^{\gamma\gamma}\right) / \left(\sum_{tracks} p_{T} + p_{T}^{\gamma\gamma}\right)$$

•
$$\mathbf{p}_{\mathsf{T}}^{\mathsf{bal}} = -\sum_{tracks} \left(\overline{p}_{T}^{track} \cdot \frac{\overline{p}_{T}^{\gamma\gamma}}{\left| \overline{p}_{T}^{\gamma\gamma} \right|} \right)$$

VERTEX ID: CONVERSIONS

- about 40% of photons converts in Tracker Volume
- measure photon direction using conversion vertex position and cluster barycenter

VERTEX ID: PERFORMANCE

Overall performance integrated over Higgs P_T spectrum (from data):

83.1%±0.2%(stat)±0.5%(syst)

Photon Isolation And PU

Multiple interactions pose additional challenges in this area:

additional energy in isolation cones (ECAL and HCAL)

- addressed using **FastJet** ρ subtraction

- for track isolation cut on Δz to reject PU tracks, but need to protect against incorrect vertex assignment
 - additional cut on track isolation computed wrt vertex giving highest track isolation sum for a given photon

ISOLATION VARIABLES

- Three seperate isolation quantities are cut on:
 - **1** Relative Track Isolation wrt Selected Vertex: Track isolation with $|\Delta z| < 1.0 \text{ cm}$, $|d_{xy}| < 0.1 \text{ cm}$ wrt selected vertex. Annulus $0.02 < \Delta R < 0.3$. $Iso_{TRKRel} = \frac{\sum p_T^{track}}{p_T^{\gamma}/50 \text{ GeV}}$
 - Ombined Relative Isolation wrt Selected Vertex:
 - Track isolation as above
 - Ecal isolation with 0.3 cone-size with Jurassic veto region, ρ correction with $A_{eff} = 0.17$
 - HCal isolation with 0.4 cone-size and 0.15 inner veto cone, ρ correction with $A_{eff} = 0.17$

•
$$Iso_{Rel} = rac{Iso_{Trk} + Iso_{Ecal} + Iso_{Hcal}}{p_T^{\gamma}/50 \text{GeV}}$$

Combined Relative Isolation wrt Largest Iso Vertex:

- Relative isolation as above, except track isolation Δz cut computed with respect to the vertex giving the highest isolation sum
- Cone size of 0.4 for all iso sums (to be more sensitive to choosing the vertex where a jet originated)
- A_{eff} for Ecal and Hcal iso of 0.52 (due to larger Ecal cone size)

PHOTON ID IN CATEGORIES

• different cuts are applied for different photon categories based on $\eta \ge R_9$

Category	Photon requirement	Common name
1	$ \eta < 1.4442, R_9 > 0.94$	Barrel, high R9
2	$ \eta < 1.4442, R_9 < 0.94$	Barrel, low R9
3	$1.566 < \eta < 2.5, R_9 > 0.94$	Endcap, high R ₉
4	$1.566 < \eta < 2.5, R_9 < 0.94$	Endcap, low R9

 cuts are optimized such that given for a given purity value (S/B) efficiency is optimized across the photon categories

Variable	Cut value				
Variable	Category 1	Category 2	Category 3	Category 4	
Rel. comb. iso. (selected vertex)	3.8	2.2	1.77	1.29	
Rel. comb. iso. (worst vertex)	11.7	3.4	3.9	1.84	
Rel. track iso. (selected vertex)	3.5	2.2	2.3	1.45	
$\sigma_{i\eta i\eta}$	0.0106	0.0097	0.028	0.027	
H/E	0.082	0.062	0.065	0.048	
R9	0.94	0.36	0.94	0.32	
ΔR to electron track	-	0.062	-		

Table 6: Photon ID selection cut values. The cuts are applied to both the leading and subleading photons.

BACKGROUND NORMALIZATION

 DiPhoton bkg divided in different categories defined by experimental origin: k-factors derived x category as product of (K_{NLO}/K_{LO})* (K_{DATA}/K_{NLO})

prompt-prompt 1.3±0.2 CMS QCD-10-035
prompt-fake 1.3±0.25 CMS gamma-jet QCD-10-037
fake-fake 1±0.5
DY: CMS measurements in EWK-10-005

PHOTON ENERGY SCALE AND RESOLUTION

- energy scale and resolution corrections measured from Z→ee per photon category (2 η x 2 R₉)
- values obtained by
 - 1) **smearing** electron energies in the MC
 - 2) find the **values** (bias and smearing) that **maximize the likelihood** between the invariant mass distributions in data and smeared MC
- electrons divided in categories (same categories as photons)
- results cross-checked with fit to the Z line shape using Breit-Wigner ⊗ Crystal ball (with larger uncertainties)

$Z \rightarrow EE \text{ AFTER SMEARING}$

EVENT CLASSES

- For signal/background modeling (and limit/signal extraction) divide events in 8 classes (2η x 2R₉ x 2 p_{Tγγ}) exploiting differences in mass resolution and S/B
- p_{Tγγ} classification particularly sensitive to Fermiophobic higgs scenarios (production mechanism restricted only to VBF and VH)

	Both photons in barrel		One or more in endcap	
	$min(R_9) > 0.94$	$nin(R_9) > 0.94$ $min(R_9) < 0.94$		$min(R_9) < 0.94$
$p_{\rm T}^{\gamma\gamma} < 40 {\rm GeV}/c$				
Signal	20.9%	27.1%	9.4%	11.6%
Background	16.7%	26.3%	12.9%	20.3%
Signal σ_{eff} (GeV/ c^2)	1.58	2.33	3.14	3.60
$p_{\rm T}^{\gamma\gamma} > 40 {\rm GeV}/c$			\sim	
Signal	10.2%	12.2%	3.5%	5.1%
Background	4.3%	7.9%	4.3%	7.4%
Signal σ_{eff} (GeV/ c^2)	1.37	2.12	2.95	3.26

m_H=120 GeV/c²

 σ_{eff} = half width of narrowest window containing 68.3% (Used because of non-Gaussian tails: both fitted σ , and FWHM

are too optimistic; RMS is too pessimistic)

SIGNAL MODELING

Two approaches pursued for limit setting:

parametric model

- fit smeared/corrected MC invariant mass distributions with a parametric model
- systematics are parametrized as shape variations

• binned/template morphing

- Nominal shape obtained from histograms of smeared/corrected MC
- Systematics incorporated as alternate histograms (+/- 1σ) and using template morphing

PARAMETRIC SIGNAL MODELING

- fit separately correct and incorrect vertex selected events in each of the 8 event classes using **sum of gaussians** (up to 3 needed. Gaussian used because numerically convenient)
- interpolation between available MC mass points to derive the model as a function of Higgs mass

EFF X ACC VS HIGGS MASS

Eff x Acc goes from ~36% to ~46% from 110 to 140 Higgs mass: mostly due to fixed 40,30 p_T cuts and to the p_T dependence of the photon identification

MASS RESOLUTION: BEST AND WORST CLASS

BACKGROUND MODELING

 Background modeled by a fit to data in each event class from 100 to 150 GeV

limit extracted in region 110-140 to allow enough sidebands

- Fitting using 2nd order polynomials to allow for kinematic turn-on in high p_T categories and to have enough parametric freedom to reasonably cover systematics
- Bernstein polynomials basis chosen (physically equivalent to a simple 2nd order polynomial function) in order to avoid fit to become negative (used as pdf in limit extraction)

http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf

$$B_{0,2}(t) = (1-t)^{2}$$

$$B_{1,2}(t) = 2t(1-t)$$

$$B_{2,2}(t) = t^{2}$$

$$B_{2,2}(t) = t^{2}$$

$$B_{2,2}(t) = t^{2}$$

$$B_{2,2}(t) = t^{2}$$

t

BACKGROUND FITS: LOW PT(<40) CLASSES

min(R₉)>0.94 min(R₉)<0.94 90 Events / (1 GeV/c²) Events / (1 GeV/c² CMS preliminary CMS preliminary -+- Data -+- Data - Bkg Model Bkg Model 80F $\sqrt{s} = 7 \text{ TeV L} = 1.09 \text{ fb}^{-1}$ $\sqrt{s} = 7 \text{ TeV L} = 1.09 \text{ fb}^{-1}$ 50 ±1σ ±1σ p_7/<40 GeV p^{γγ}<40 GeV 70 ±2 σ ±2 σ Max(|η|)<1.5, Min(R_)>0.94 40 60 50 30 40 20 30 20 10 10 0 120 130 140 110 120 130 140 150 150 110 $m_{\gamma\gamma}~(GeV/c^2)$ $m_{\gamma\gamma}$ (GeV/c²) Events / (1 GeV/c² 50 CMS preliminary -+ Data Events / (1 GeV/c² CMS preliminary -+ Data 70 √s = 7 TeV L = 1.09 fb⁻¹ √s = 7 TeV L = 1.09 fb⁻¹ — Bkg Model — Bkg Model ±1σ ±1σ p^{γγ}<40 GeV 60 p^{γγ}<40 GeV 40 ±2 σ ±2 σ Max(|η|)>1.5, Min(R_)>0.94 Max(|η|)>1.5, Min(R_)<0.94 50 30 40 30 20 20 10 10 130 140 150 140 110 120 110 130 150 120 $m_{\gamma\gamma}$ (GeV/c²) $m_{\gamma\gamma}$ (GeV/c²)

Both EB

At least one in EE

 $H \rightarrow \gamma \gamma$ with CMS

BACKGROUND FITS: HIGH PT(>40) CLASSES

 $H \rightarrow \gamma \gamma$ with CMS

BACKGROUND FIT: ALL CATEGORIES COMB.

SETTING LIMITS

• CL_s Frequentist method is used with "LHC-type" test statistics

CLs "LHC-type" test statistic: $Q = -\ln \frac{\mathcal{L}(data|b(\hat{\theta}_b) + \mu s(\hat{\theta}_s))}{\mathcal{L}(data|b(\hat{\theta}_b) + \hat{\mu} s(\hat{\theta}_s))}$ (constrain $0 \leq \hat{\mu} \leq \mu$, and add external constraints for signal nuisances)

- Limits are given in Higgs mass range 110-140 in 0.5 GeV/c² mass steps
- Bayesian limit is compared with CL_s results

LIMIT FOR SM HIGGS (RELATIVE)

LIMIT FOR FERMIOPHOBIC (RELATIVE)

CMS Excluded region between 110-111 GeV (expected 110-114) Latest Tevatron results:

- •D₀ 8.2 fb⁻¹: <112 GeV (exp. 112)
- •CDF 7.0 fb⁻¹: <114 GeV (exp. 111)

UL: CLASSES AND SYSTEMATICS

Computed on expected limit @ 120 GeV

	Expected (95% CL, pb)	Ratio to nominal
Standard Model		
Nominal (8 classes)	0.139	1.00
No signal syst. (8 classes)	0.138	0.99
EB only (4 classes)	0.146	1.05
No $p_T^{\gamma\gamma}$ class. (4 classes)	0.142	1.02
No classes	0.169	1.21
No MC smearing (8 classes)	0.117	0.84
Fermiophobic		
Nominal (8 classes)	0.0885	1.00
No signal syst. (8 classes)	0.0876	0.99
EB only (4 classes)	0.0931	1.05
$p_{\rm T}^{\gamma\gamma} > 40 {\rm GeV}/c \text{ only (4 classes)}$	0.0896	1.01
No $p_T^{\gamma\gamma}$ class. (4 classes)	0.1406	1.59
No classes	0.1678	1.90

Table 23: Within the PL approximation, effect of different changes on the expected limit.

UL: CLASSES AND SYSTEMATICS

Computed on expected limit @ 120 GeV

Table 21: Standard Model: expected limits (95% CL, PL, in pb) for $m_{\rm H} = 120 \,{\rm GeV}/c^2$ for each individual event class.

	Both photons in barrel		One or more in endcap	
	$min(R_9) > 0.94$ $min(R_9) < 0.94$		$min(R_9) > 0.94$	$min(R_9) < 0.94$
$p_{\rm T}^{\gamma\gamma} < 40 {\rm GeV}/c$	0.27	0.31	0.90	0.93
$p_{\rm T}^{\gamma\gamma} > 40 {\rm GeV}/c$	0.30	0.38	1.22	1.07

Table 22: Fermiophobic Model: expected limits (95% CL, PL, in pb) for $m_{\rm H} = 120 \,{\rm GeV}/c^2$ for each individual event class.

	Both photons in barrel		One or more in endcap	
	$min(R_9) > 0.94$ $min(R_9) < 0.94$		$min(R_9) > 0.94$	$min(R_9) < 0.94$
$p_{\rm T}^{\gamma\gamma} < 40 {\rm GeV}/c$	0.88	1.02	2.58	2.68
$p_{\rm T}^{\hat{\gamma}\gamma} > 40 {\rm GeV}/c$	0.12	0.16	0.45	0.46

P-VALUES (SM)

Values extracted from asymptotic behavior of ProfileLikelihood test statistics. Look elsewhere effect not included (~12)

$H \rightarrow \gamma \gamma$ with CMS

P-VALUES (FERMIOPHOBIC)

