Higgs search in TauTau final states @ CMS

Simone Gennai (CERN/INFN) on behalf of the CMS Collaboration

Outline

- □ Analyzed data
- Signal processes
- Event Categorization
- Tau ID
- Event selection
- Invariant mass distribution
- □ Limits
 - □ Reference: PAS-HIG-11-009

Collected/Analyzed Data

- □ Data delivered by LHC : 1.28 fb⁻¹
- □ Data recorded by CMS : 1.18 fb⁻¹
 - □ about 92%
- □ High quality data : 1.1 fb⁻¹
 - □ about 93%
- □ Analyzed data 1.1 fb⁻¹

MSSM

Categorization

limit based on the fit of the visible mass distribution

to gain sensitivity event categories on the basis of extra jets

Standard Model

VBF

Jets (pT > 30 GeV) = 2 AND VBF selections^(*)

NOT VBF

Jets (pT > 30 GeV) < 3 **NR** Fails VBF selections

MSSM bTagging # Jets (pT > 30 GeV) < 2 AND # btagged jets (pT > 20 GeV) > 0

NOT bTagging

Jets (pT > 30 GeV) < 2 AND # btagged jets (pT > 20 GeV) = 0

* VBF : Mjj > 350 GeV, DeltaEtajj > 3.5, eta_j1 * eta_j2 > 0 **EPS-HEP 2011** 5

Jet variables

Hadronic Tau identification

Simone.Gennai@cern.ch

Tau ID efficiency

Improved tau ID using Tag & Probe

- BKG constrained from sidebands
 - □ See Mauro Verzetti poster for more information

Uncertainty's source	
Muon Momentum Scale	<< 1%
τ-Jet Energy Scale	< 1%
Track Reconstruction	3.9%
Track Momentum Scale	< 1%
Lead. Track P _T Cut	1%
Loose Isolation	2.5%
Jet $\rightarrow \tau_{had}$ Fakes	1.2%
Lead. Track Corr. Factor	1.7%
Loose Iso. Corr. Factor	2.1%
Fit (Statistical Uncertainty)	2.6%
Total uncertainty	6%

New! (was 23% for Winter conferences)

Event selections

Standard CMS Jet/MET/lepton reconstruction and selection

□ Acceptance cuts:

Mu+Tau

Muon pT > 15 GeV, |eta| < 2.1 and Tau pT >20 GeV, |eta| < 2.3

Ele pT > 20 GeV, |eta| < 2.1 and Tau pT >20 GeV, |eta| < 2.3

Mu+Ele

Muon pT > 20 (10) GeV, |eta| < 2.1 and Ele pT > 10 (20) GeV, |eta| < 2.5

Mu+Mu

Lead muon pT > 20 GeV, |eta| < 2.1 and Second muon pT > 10 GeV, |eta| < 2.4

Topological cuts

- Leptons are required to have opposite charge
- □ e/mu+Tau and e+mu
 - □ Pzeta variable ("imported" from CDF) to suppress W+Jets
- 🗆 mu+mu
 - □ MET < 65 GeV
 - □ likelihood based selections using MET and muons related information

Data Driven

- □ QCD (mu+Tau, e+Tau)
- □ Fake electrons bkg (e+mu)
- □ Z->mumu (mu+mu)

□ MC shape + sidebands normalization

- □ Z->TauTau
- □ TTbar
- □ W+Jets (mu+Tau, e+Tau, e+mu)

□ Pure MC

 \Box WW/ZZ/WZ

EPS-HEP 2011

Uncertainties table

Source	Uncertainty	Usage
Lepton ID /trigger	1%	Efficiency correction factors
Tau ID efficiency	6%	Efficiency correction factors
Tau energy scale	3%	Shape uncertainties
σ(Z → μμ/ee)	3%	$Z \rightarrow \tau \tau$ yield normalization
σ(ttbar)	12%	TTBar yield normalization
B-Tag Efficiency	10%	Correction factors
B-Tag Mistag rate	14%	Correction factors
Jet energy scale	2-5%	JEC in acceptance for BTagging/VBF
PDFs	3%	Uncertainty in cross section
UE/Parton Shower	4%	Uncertainty in cross section
QCD Scale	4-12%	Uncertainty in cross section
Luminosity	6%	

MSSM

Mass distributions

final state	VBF
mu+Tau BKG	14 +- 4
mu+Tau Data	18
e+Tau BKG	5.9 +- 2.5
e+Tau Data	7
e+mu BKG	6.7 +- 1
e+mu Data	2
mu+mu BKG	92 +- 7
mu+mu Data	103

17

Conclusions

- MSSM limit MUCH improved wrt 2010 data
- □ First look at the SM limit : SigmaxBR < 10 x Standard Model
 - Doing 1.5x better than what we expected !

EPS-HEP 2011

CMS has an advanced trigger system

- □ the HLT reconstruction allows a refined selection
 - □ performance very similar to the offline
 - Tau trigger rely already on the particle flow @ HLT !
- combined triggers looking for pairs of leptons allows to keep the thresholds low even in the presence of high luminosity and PU

Tau pT distribution

- □ Z->TauTau
 - D MC based shape, with normalization taken from Z->II CMS measurement (2%)
 - data driven normalization for event categories (using Z->mumu)

□ QCD (e+tau and mu+tau)

- □ taking SS data and apply correction for OS/SS ratio
 - W+Jets and Z->II contamination properly subtracted
 - OS/SS ratio measured with single lepton triggers

□ W+Jets (e+tau and mu+tau)

- □ MC based shape
- normalization taken from sidebands (reverting the Pzeta cut)
- □ Fake electrons bkg (for e+mu only)
 - mostly QCD, Z->II, W+jets. Taken from data using fake rate method
 - □ uncertainty of 30% used in the fit
- □ TTbar
 - MC based shape, with normalization taken from CMS measurement
 - □ 12% uncertainty in the fit
 - data driven normalization for event categories using sidebands
- □ Di-boson (WW/ZZ/WZ)
 - □ taken from MC (30% uncertainty in the fit)
- □ Z->mumu (mu+mu case)
 - bkg normalization and shape taken with sidebands on the Likelihood based variable

EPS-HEP 2011

Signal acceptance

.

MSSM limits/channel

Figure 25: Results for the expected (left) and observed (right) cross section, 95% upper limits, using BTagging for MSSM efficiency model for $\mu + \tau_h$, $e + \tau_h$, $e + \mu$, $\mu\mu$ and combined.

SM limits/channel

