

THE MUON ACCELERATOR RESEARCH AND DEVELOPMENT PROGRAM

International Europhysics Conference on High Energy Physics Grenoble, 21-27 July 2011

Gail G. Hanson, University of California, Riverside On Behalf of the Muon Accelerator Program (MAP)

OUTLINE

- Why A Muon Collider?
- Muon Accelerator Program (MAP)
- Muon Collider Facility
 - Proton Driver
 - Target and Capture
 - Phase Rotation
 - Cooling
 - Acceleration
 - Collider Ring
- Critical Issues
- MuCool Test Area
- Summary and Conclusions

WHY A MUON COLLIDER?

+ -cuc

LHC hints need for higher energy (ILC is 0.5 TeV) • Compare with CLIC ..+..- ..+..-

	μ · μ	μ ' μ		e'e CLIC
C of m Energy	1.5	3	TeV	3
Luminosity	1	4	$10^{34} {\rm ~cm^{-2} s^{-1}}$	$2^{(1)}$
Ring <bending field=""></bending>	6	8.4	Т	-
Accelerator circ./length	6	12	km	48
rms bunch height	6	4	μ m	0.001
Proton Driver power	4.	3.2	MW	-
Lepton power	7	11	MW	28
Wall power	$\approx \! 147$	pprox159	MW	560

Wall power 1/3 of 3 TeV CLIC, 2/3 of 0.5 TeV ILC

WHY A MUON COLLIDER?

4

Large muon mass greatly reduces beamstrahlung

EPS-HEP11, 21-27 July 2011

G. Hanson, UC Riverside

MUON ACCELERATOR PROGRAM (MAP)

- Of course, much development is still needed.
- The Muon Accelerator Program (MAP), hosted by Fermilab, was formed to coordinate the R&D that had been carried out by the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Muon Collider Task Force (MCTF) over 10 years.
- A review of the program was held at Fermilab 24-26 August 2010.
- MAP was approved by the U.S. Department of Energy in March 2011.
- Search for a Director is underway.
- URL http://map.fnal.gov/

EPS-HEP11, 21-27 July 2011

GOALS OF MAP

- Complete Design Feasibility Study (DFS) Report for a multi-TeV muon collider, including cost range
- Contribute to the International Neutrino Factory Design Study (IDS-NF) to produce a Reference Design Report by 2013
- Carry out supporting technology R&D needed to inform the muon collider DFS and enable down-selection
- Participate in system tests of 4D and 6D cooling Muon Ionization Cooling Experiment (MICE) and 6D "bench test" (no beam)
- Time scale of 6-7 years

MUON COLLIDER FACILITY

EPS-HEP11, 21-27 July 2011

PROTON DRIVER

- Upgrade of Project X Task Force
- For Muon Collider, want 4 MW at 8 GeV
- CW SC Linac 1 mA to 3 GeV increase to 5 mA pulsed Linac 3-8 GeV

TARGET AND CAPTURE

- Target
 - Successful demonstration experiment -**MERIT at CERN PS**
 - Mercury jet in a 15 T solenoid
- Capture in 20 T solenoid
 - Shielding and radiation issues being studied

EPS-HEP11, 21-27 July 2011

PHASE ROTATION

- Produce, collect, and cool as many muons as possible
- Start with IDS-NF study and reoptimize for collider
 - Shorter bunch train
 - Larger gradients
- Bunch recombiner

• Large ΔE , small $\Delta t \rightarrow \text{ small } \Delta E$, larger Δt

• **~ 48% of longitudinal phase space captured** EPS-HEP11, 21-27 July 2011 G. Hanson, UC Riverside

COOLING

- 4D Initial Cooling
 - Based on Neutrino Factory Feasibility Study 2a
 - Vacuum RF (gradients to 18 MV/m)
 - SC solenoids (2 T)
 - LiH absorbers
 - $-0.15 \ \mu/p$ (each sign)

COOLING

- 6-Dimensional Cooling
 - Tapered Guggenheim (helical RFOFO)
 - Simulated in approximation
 - RF gradient 16 MV/m
 - Maximum magnetic field on axis 2.3 T to 10.6 T
 - Wedge absorbers
 - Other options: Helical FOFO Snake, Helical Cooling Channel

COOLING

• 4D Final Cooling

- 30-40T HTS magnets operating at 4K
- RF cavities and Induction linacs
- $-LH_2$ forced-flow absorbers
- Only option that can achieve ϵ_{\perp} < 25 μ m in simulation

- Low-energy Acceleration
 - Re-optimize IDS-NF design
 - LINAC and Two RLA's
 - Exploring dog-bone RLA's less costly

ACCELERATION

Acceleration to High Energy

- Fast-ramping synchrotron synchrotrons less expensive than racetracks
- High average bend field (8 T)
- Magnets ramped extremely fast -1.8 T to 1.8 T at 400 Hz

COLLIDER RING

- Challenging design criteria (compared with existing colliders):
 - Much larger momentum acceptance with much smaller β^*
 - As large Dynamic Aperture with much stronger beambeam effect
 - Very small momentum compaction factor
- Design taking IR's into account
- Large heat load into magnets in plane of ring due to μ decays.

CRITICAL ISSUES

- 1. Operation of high-gradient NCRF in high magnetic fields
- Needed in capture, bunching, phase rotation, and cooling

805 MHz studies: Maximum stable gradient degrades quickly with magnetic field

CRITICAL ISSUES

- Pursuing multiple studies at Fermilab MuCool Test Area:
 - \diamond Reduce/eliminate field emission
 - \rightarrow Process cavities using SCRF techniques
 - → Surface coatings Atomic Layer Deposition
 - ♦ Material studies
 - → Non-Cu bodies (Al, Be)
 - \diamond RF cavities filled with high-pressure gas (H₂)
 - →Use Paschen effect to stop breakdown
 - →Test underway at Fermilab MuCool Test Area
 - ♦ Magnetic insulation
 - \rightarrow Eliminate magnetic focusing

CRITICAL ISSUES

- 2. Neutrino radiation
 - To stay below Federal limits at 3 TeV need to be well underground in-depth study needed
 - Incorporate mitigation into ring design
- 3. R&D on very high field and fast-ramping magnets
- 4. End-to-end simulation of complete Muon Collider
- 5. Space charge and wake field questions
- 6. Successful completion of the Muon Ionization Cooling Experiment (MICE)

MUCOOL TEST AREA AT FERMILAB

- Component testing: RF, Absorbers, Solenoids with
- High-Intensity Proton Beam now taking data!
- Uses MuCool Test Area (MTA) at Fermilab
- Supports Muon Ionization Cooling Experiment (MICE) 50 cm Ø Be RF window

Most Important: Studying the limits on accelerating gradient in NCRF cavities in high magnetic field

EPS-HEP11, 21-27 July 2011

201 MHz RF testing

LH₂ Absorber Body

G. Hanson, UC Riverside

SUMMARY AND CONCLUSIONS

- Muon Acceleration Program (MAP) approved by U.S. Department of Energy
- The Neutrino Factory Design Study (IDS-NF) Reference Design Report will be completed
- Within 5-6 years we will have a Design Feasibility Study and cost range for a multi-TeV muon collider
- Considerable progress on Muon Collider R&D but many challenges remain!
- Decision on energy for next lepton collider depending on LHC results