THE MUON ACCELERATOR RESEARCH AND DEVELOPMENT PROGRAM

International Europhysics Conference on High Energy Physics
Grenoble, 21-27 July 2011

Gail G. Hanson, University of California, Riverside
On Behalf of the Muon Accelerator Program (MAP)
OUTLINE

• Why A Muon Collider?
• Muon Accelerator Program (MAP)
• Muon Collider Facility
 – Proton Driver
 – Target and Capture
 – Phase Rotation
 – Cooling
 – Acceleration
 – Collider Ring
• Critical Issues
• MuCool Test Area
• Summary and Conclusions
WHY A MUON COLLIDER?

• LHC hints need for higher energy (ILC is 0.5 TeV)

Compare with CLIC

<table>
<thead>
<tr>
<th></th>
<th>$\mu^+\mu^-$</th>
<th>$\mu^+\mu^-$</th>
<th>e^+e^-CLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C of m Energy</td>
<td>1.5</td>
<td>3</td>
<td>TeV</td>
</tr>
<tr>
<td>Luminosity</td>
<td>1</td>
<td>4</td>
<td>10^{34} cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>Ring <bending field></td>
<td>6</td>
<td>8.4</td>
<td>T</td>
</tr>
<tr>
<td>Accelerator circ./length</td>
<td>6</td>
<td>12</td>
<td>km</td>
</tr>
<tr>
<td>rms bunch height</td>
<td>6</td>
<td>4</td>
<td>μm</td>
</tr>
<tr>
<td>Proton Driver power</td>
<td>4.</td>
<td>3.2</td>
<td>MW</td>
</tr>
<tr>
<td>Lepton power</td>
<td>7</td>
<td>11</td>
<td>MW</td>
</tr>
<tr>
<td>Wall power</td>
<td>\approx147</td>
<td>\approx159</td>
<td>MW</td>
</tr>
</tbody>
</table>

• Wall power 1/3 of 3 TeV CLIC, 2/3 of 0.5 TeV ILC
WHY A MUON COLLIDER?

- Large muon mass greatly reduces beamstrahlung
Muon Collider Fits on Fermilab Site

Layout at FNAL

3 TeV

Collider Ring

RCS Accelerator

To scale, but not located
• Of course, much development is still needed.

• The Muon Accelerator Program (MAP), hosted by Fermilab, was formed to coordinate the R&D that had been carried out by the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Muon Collider Task Force (MCTF) over 10 years.

• A review of the program was held at Fermilab 24-26 August 2010.

• MAP was approved by the U.S. Department of Energy in March 2011.

• Search for a Director is underway.

• URL http://map.fnal.gov/
GOALS OF MAP

• Complete Design Feasibility Study (DFS) Report for a multi-TeV muon collider, including cost range
• Contribute to the International Neutrino Factory Design Study (IDS-NF) to produce a Reference Design Report by 2013
• Carry out supporting technology R&D needed to inform the muon collider DFS and enable down-selection
• Participate in system tests of 4D and 6D cooling – Muon Ionization Cooling Experiment (MICE) and 6D “bench test” (no beam)
• Time scale of 6-7 years
MUON COLLIDER FACILITY

Scheme

- Project X
- Existing
- Same as Neutrino Factory

Options

- * Probably favored
 - Guggenheim
 - HCC
 - Guggenheim + gas
 - Wiggler
 - 40 T solenoids
 - REMX
 - RLA
 - Pulsed Synchrotron
 - FFAG

More R&D needed to confirm viability and narrow the options

(Palmer)
PROTON DRIVER

• Upgrade of Project X – Task Force
• For Muon Collider, want 4 MW at 8 GeV
• CW SC Linac – 1 mA to 3 GeV – increase to 5 mA pulsed Linac 3-8 GeV
TARGET AND CAPTURE

• Target
 – Successful demonstration experiment – MERIT at CERN PS
 – Mercury jet in a 15 T solenoid

• Capture in 20 T solenoid
 – Shielding and radiation issues being studied
PHASE ROTATION

• Produce, collect, and cool as many muons as possible
• Start with IDS-NF study and reoptimize for collider
 – Shorter bunch train
 – Larger gradients
• Bunch recombiner
PHASE ROTATION

- Large ΔE, small $\Delta t \rightarrow$ small ΔE, larger Δt
- $\approx 48\%$ of longitudinal phase space captured
COOLING

- Since muons decay, need ionization cooling

Transverse (4D)

Longitudinal (6D)

EPS-HEP11, 21-27 July 2011
G. Hanson, UC Riverside
COOLING

Scheme

Long Emittance (mm)

10^3

10^2

10^1

10.0

1.0

0.1

Trans emittance (mm mrad)

10^2

10^3

2

4

6

8

2

4

5

6

7

8

9

1/3 scale 805 MHz Ring or Guggenheim

Combine → 1 bunch

201 MHz RFOFO Guggenheim

50 m S2a Linear Cooling 200 MHz

1/2 Scale RFOFO Guggenheim 402 MHz

40T Solenoids

Initial

Standard Study, Capture and Phase Rot

20 bunches

NF FRONT END?

EPS-HEP11, 21-27 July 2011

G. Hanson, UC Riverside
COOLING

• 4D Initial Cooling
 – Based on Neutrino Factory Feasibility Study 2a
 – Vacuum RF (gradients to 18 MV/m)
 – SC solenoids (2 T)
 – LiH absorbers
 – 0.15 μ/p (each sign)
COOLING

• 6-Dimensional Cooling
 ✷ Tapered Guggenheim (helical RFOFO)
 – Simulated in approximation
 – RF gradient 16 MV/m
 – Maximum magnetic field on axis 2.3 T to 10.6 T
 – Wedge absorbers
 ✷ Other options: Helical FOFO Snake, Helical Cooling Channel
COOLING

• 4D Final Cooling

- 30-40T HTS magnets operating at 4K
- RF cavities and Induction linacs
- LH$_2$ forced-flow absorbers
- Only option that can achieve $\varepsilon_\perp < 25 \ \mu m$ in simulation
ACCELERATION

- Low-energy Acceleration
 - Re-optimize IDS-NF design
 - LINAC and Two RLA’s
 - Exploring dog-bone RLA’s – less costly
ACCELERATION

- Acceleration to High Energy
 - Fast-ramping synchrotron – synchrotrons less expensive than racetracks
 - High average bend field (8 T)
 - Magnets ramped extremely fast -1.8 T to 1.8 T at 400 Hz
COLLIDER RING

• Challenging design criteria (compared with existing colliders):
 – Much larger momentum acceptance with much smaller β^*
 – As large Dynamic Aperture with much stronger beam-beam effect
 – Very small momentum compaction factor
• Design taking IR’s into account
• Large heat load into magnets in plane of ring due to μ decays.
CRITICAL ISSUES

1. Operation of high-gradient NCRF in high magnetic fields
 • Needed in capture, bunching, phase rotation, and cooling

805 MHz studies: Maximum stable gradient degrades quickly with magnetic field
CRITICAL ISSUES

• Pursuing multiple studies at Fermilab MuCool Test Area:
 ◇ Reduce/eliminate field emission
 → Process cavities using SCRF techniques
 → Surface coatings – Atomic Layer Deposition
 ◇ Material studies
 → Non-Cu bodies (Al, Be)
 ◇ RF cavities filled with high-pressure gas (H₂)
 → Use Paschen effect to stop breakdown
 → Test underway at Fermilab MuCool Test Area
 ◇ Magnetic insulation
 → Eliminate magnetic focusing
2. Neutrino radiation
 - To stay below Federal limits at 3 TeV need to be well underground – in-depth study needed
 - Incorporate mitigation into ring design
3. R&D on very high field and fast-ramping magnets
4. End-to-end simulation of complete Muon Collider
5. Space charge and wake field questions
6. Successful completion of the Muon Ionization Cooling Experiment (MICE)
MUOCool TEST AREA AT FERMILAB

- Component testing: RF, Absorbers, Solenoids with High-Intensity Proton Beam – now taking data!
- Uses MuCool Test Area (MTA) at Fermilab
- Supports Muon Ionization Cooling Experiment (MICE)

Most Important: Studying the limits on accelerating gradient in NCRF cavities in high magnetic field

EPS-HEP11, 21-27 July 2011
G. Hanson, UC Riverside
SUMMARY AND CONCLUSIONS

• Muon Acceleration Program (MAP) approved by U.S. Department of Energy
• The Neutrino Factory Design Study (IDS-NF) Reference Design Report will be completed
• Within 5-6 years we will have a Design Feasibility Study and cost range for a multi-TeV muon collider
• Considerable progress on Muon Collider R&D but many challenges remain!
• Decision on energy for next lepton collider depending on LHC results