Measurement of Inelastic, Diffractive, and Exclusive processes in CMS Jonathan Hollar (UCLouvain) for the CMS collaboration

7/22/2011

The setting:CMS@LHC

- High energy and high luminosity
 - Allows high statistics precision measurements, and sensitivity to "rare" processes (hard diffraction, exclusive production)
 - But high luminosity comes with high "pileup" – average 2-4 extra interactions/crossing in 2010, 5-8 in 2011

- Good detector coverage
 - Tracking to $|\eta| < 2.4$
 - Hadronic calorimeter (HF) to |η| < 5
 - Forward calorimeters (cover -6.6< η< -5.2 (CASTOR) and |η| > 8.1 (ZDC)

Measurement of the inelastic cross-section using pileup events

CMS PAS FWD 11-001 (in preparation)

Motivation & method

- Probability of a number interactions occurring in a crossing depends on the total *pp* cross-section
 - => Turn pileup into an advantage for measuring σ(pp)

$$P(n_{pileup}) = \frac{(L \cdot \sigma)^{n_{pileup}}}{n_{pileup}!} \cdot e^{-(L \cdot \sigma)}$$

- Method based on counting # of vertices as a function of luminosity
 - Samples collected with highefficiency triggers (e.g. dielectrons)
 - Data is corrected for vertex merging, and inefficiencies in reconstructing vertices with low track multiplicity

Fitting

 Unfolded distributions are fit to a Poisson distribution for each value of pileup (=N_{vertices}-1) from o-8

Results (I)

- Nine statistically independent measurements, for each value of the pileup
- Final result from a fit to all nine points
- For 3 tracks with p_T>200MeV, |η| < 2.4, the resulting crosssection is:

 $\sigma = 58.7 \pm 2.0$ (Sys) ± 2.4 (Lumi) mb

Results (II)

- Measurement is compared to predictions of several models
 - Gives a range of extrapolation factors that can be used to bound the total inelastic cross-section:

$$o(pp) = 68.0 \pm 2.0 \text{ (Sys)} \pm 2.4 \text{ (Lumi)} \pm 4.0 \text{ (Extr.) mb}$$

CMS model-dependent extrapolation

Diffraction @ 7TeV

CMS PAS FWD 10-007

Inclusive Diffration

- Analysis based on 20µb⁻¹ of low-pileup 7TeV data
 - Extends previous CMS results on diffraction at 900GeV and 2.36TeV
 - Trigger with scintillator counters (BSC) and require a vertex consistent with collisions
- Diffractive signal appears as an enhancement near zero in several sensitive variables
 - N(HF towers over threshold)
 - □ ΣE(HF)
 - ΣE-p_Z (~ξ), summed over all calorimeter towers

Event distributions

- Select a diffractively enhanced sample by requiring <8GeV in HF+
- Track multiplicities, track p_T distributions, and energy deposits opposite the gap side compared a range of models
 - Pythia 8 and Phojet better describe the diffractive component, while Pythia 8 and several Pythia 6 tunes perform better for inclusive distributions
- None of the models describe all features of the data

Diffractive W/Z

CMS PAS FWD 10-008

Introduction and selection

- Part of a larger systematic study of track multiplicity and forward energy flow in W/Z events
- Search for a diffractive component in W/Z events
- Sensitive to multi-parton interactions (MPI), gap-survival probabilities
 - Additional interactions may "fill the gap" in diffractive interactions

- Select W/Z events with a single-vertex to suppress pileup
 - Residual contamination from soft pileup events studied in MC, and in data as a function of average instantaneous luminosity

W/Z with gaps

- Search for a diffractive component in W/Z events
- Define Large Rapidity Gap selection using sum of calorimeter towers in HF (3 < |η| < 5) above4GeV
- Excess of events with zero energy compared to Pythia 6 D6T tune
 - But deficit compared to Pythia 6 Z2, Pythia 8

 $W \rightarrow \mu \nu X$

Fraction of LRG events $W \rightarrow l v = 1.46 \pm 0.09 \text{ (stat.)} \pm 0.38 \text{ (syst.)} \%$ $Z \rightarrow ll = 1.60 \pm 0.25 \text{ (stat.)} \pm 0.42 \text{ (syst.)} \%$

Lepton asymmetry

 $W \rightarrow l \nu X$

- Additional sensitivity to diffraction from the charged lepton asymmetry η_{Lepton}
 - POMPYT MC predicts leptons from diffractive W/Z are preferentially produced opposite the LRG (smallx diffractive PDF's)
 - All Pythia tunes predict a flat distribution
- Large asymmetry observed in the LRG sample in data, with best-fit fraction for the diffractive component:

50.0 \pm 9.3 (stat.) \pm 4.2 (syst.) %

Exclusive $\gamma\gamma \rightarrow \mu\mu$

CMS PAS FWD 10-005

Exclusive production

Proton dissociation

- Exclusive production $pp \rightarrow p \mu \mu p$
 - QED like "Standard Candle", proposed as a possible future luminosity measurement
- Largest "background" from $\gamma\gamma \rightarrow \mu\mu$ with proton dissociation
 - $pp \rightarrow p\mu\mu Y_{I}$ or $pp \rightarrow X\mu\mu Y$ with proton remnants undetected

Exclusive dimuons

- Selection based on tracking only, to keep high efficiency with pileup
- Require a µµ vertex, with no other tracks associated
 - Measurement in a restricted phase space $p_T(\mu) > 4 \text{ GeV}$, $|\eta(\mu)| < 2.1$, $m(\mu\mu) > 11.5 \text{ GeV}$, to minimize systematic errors and remove *Y* photoproduction

- Efficiency of the track veto is measured in beam-crossing triggered data
 - 92% for full 2010 sample
 - ~70% for events with 8 vertices and 2mm veto size

Exclusive dimuons

- Signal yield and ratio to the prediction obtained from a fit to the p_T(μμ) distribution
 - Signal yield, single *p*-dissociation yield, and a correction to the slope of the *p*dissociation are free parameters
 - Signal and p-dissociation yields are highly anti-correlated

For $p_T(\mu) > 4$ GeV, $|\eta| < 2.1$, $m(\mu\mu) > 11.5$ GeV:

 $\sigma = 3.38 \, {}^{+0.58}_{-0.55} \, (\text{stat.}) \pm 0.16 \, (\text{syst.}) \pm 0.14 \, (\text{lum.}) \text{ pb}$ Ratio = 0.83 ${}^{+0.14}_{-0.13} \, (\text{stat.}) \pm 0.04 \, (\text{syst.})$

Kinematic distributions

- Kinematic distributions compared to LPAIR MC with best fit normalization
- Good agreement with expectations for exclusive $\gamma\gamma \rightarrow \mu\mu$ plus proton dissociation
 - $|1-\Delta\phi(\mu\mu)/\pi|, \Delta p_T(\mu\mu)$ peak at ~o, consistent with exclusive production
 - m($\mu\mu$) spectrum extends to 76 GeV, no events consistent with $Z \rightarrow \mu\mu$ (consistent with suppression of spin-1 resonance production $\gamma\gamma$ interactions)

Conclusions

- Inelastic cross-section
 - New measurement based on counting vertices in pileup events
- Inclusive diffraction at 7 TeV
 - No models completely describe calorimeter and charged track distributions
- *W/Z*
 - No models completely describe energy flow and charged track distributions
 - Study of LRG events, and measurement of diffractive component from η_{lepton}
- Exclusive production
 - Observation of $\gamma\gamma \rightarrow \mu\mu$ standard candle, data well-described by LPAIR MC
- Inelastic cross-section, diffractive W/Z, exclusive $\gamma\gamma \rightarrow \mu\mu$ analyses based on the full 2010 sample (36-40 pb⁻¹), including data collected with pileup
 - Stay tuned for new results

cross-section systematics

Luminosity	$\Delta \sigma_{vtx}$
Scale the luminosity by +4%	-2.3
Scale the luminosity by -4%	+2.4

Analysis parameters	$\Delta \sigma_{vtx}$
Perform Analysis on a different dataset	+0.9
Change the fit upper limit from 0.6 to 0.5 ·10 ³⁰ cm ⁻² s ⁻¹	0.3
Change the fit lower limit from 0.05 to 0.15 $\cdot 10^{30}$ cm ⁻² s ⁻¹ : $\Delta \sigma_{vtx} = -0.3$	-0.3
Reduce the z-vertex range from 20 to 10 cm	-0.1
Change the ϵ correction by 2%	-0.4
Change the ϵ correction by -2%	0.3
Impose the minimum distance of ±1mm between two vertices	0.1

$\gamma\gamma \rightarrow \mu\mu$ systematics

Selection	Variation from nominal yield
track veto size	3.6%
track quality	2.5%
Drell-Yan background	0.4%
double p -dissociation background	0.9%
Crossing-angle	1.0%
Tracking efficiency	0.1%
Vertexing efficiency	0.1%
Momentum scale	0.1%
Efficiency correlations in J/ψ control sample	0.7%
Muon and trigger efficiency statistical error	0.8%
Total	4.8%

Exclusive quarkonia candidates

$$m = 9.44 \pm 0.08 \text{ GeV}$$
$$\frac{\Delta \phi}{\pi} = 0.99$$
$$\Delta p_T = 0.20 \text{GeV}$$

Exclusive $\gamma\gamma \rightarrow \mu\mu$ candidates

W/Z Distributions

- Measurements of
 - Energy flow in HF (3 < |η| < 4.9), summing calorimeter towes above4GeV
 - Track multiplicites (|η| < 2.4), for p_T>0.5 GeV and p_T>1.0 GeV
 - Correlations track multiplicites in bins of energy flow, energy deposits in HF+ vs. HF-
- Comparison to a range of Pythia6 and Pythia8 tunes
 - No tune simultaneously describes all multiplicity and energy flow distributions in data

7/22/2011

Total cross-section

CMS Model dependent extrapolation

7/22/2011