Heavy Flavour Production Measurements in pp Collisions at the LHC with ALICE

Yvonne Pachmayer, University of Heidelberg for the **ALICE Collaboration**

- Introduction
- ALICE apparatus
- Open charm and beauty
 - Hadronic decays
 - Semi-leptonic decays
- Quarkonia: J/ψ
- Conclusion and outlook

Heavy Flavour Production at LHC in pp Collisions

<u>A</u> Large Ion Collider Experiment

D Mesons in pp Collisions

Analysis Strategy Hadronic decays: Main Selection: displaced-vertices topology $D^0 \rightarrow K\pi$ Charged Kaon ID in Time-Projection Chamber and Time of Flight $D^0 \rightarrow K \pi \pi \pi$ system to reduce bkg at low $p_{_{T}}$ $D^+ \rightarrow K\pi\pi$ $D_{s} \rightarrow KK\pi$ Invariant mass analysis $D^* \rightarrow D^0 \pi$ Acceptance and Efficiency Correction $\Lambda_{c} \rightarrow \pi Kp$ (PID, selection, reconstruction, ...) Feed-down from B meson decays corrected with FONLL (to be compared with data-driven method using full 2010 statistics) **Data Sample** $pp\sqrt{s} = 7 \text{ TeV}, 1.4 \times 10^8 \text{ events}, p_{1}^{D^0} > 2 \text{ GeV/c}$

D Mesons Cross Section pp @ 7TeV, |y| < 0.5

FONLL: Cacciari et al., private comm. GM-VFNS: Kniehl et al., private comm.

Total Charm Cross Section in pp

Strategy: Extrapolation from p₁ = 2 GeV/c to 0 and full y using FONLL

Charm in pp 7 TeV: Outlook

EPS HEP2011, Grenoble France

Yvonne Pachmayer (University of Heidelberg)

Reconstruction of Electrons from Semi-electronic c/b Decays

Analysis Strategy

- Electron Identification with Time Of Flight system, Time-Projection Chamber and Transition Radiation Detector
- Remaining hadron contamination determined via fits of dE/dx in momentum slices
- Requirement of a hit in the innermost layer of the Inner Tracking System (r = 3.9 cm) to reduce bkg from photon conversion
- Acceptance and Efficiency Correction (PID, selection, reconstruction, ...)
- Subtraction of the background via data-tuned MC cocktail

Data Sample

• 1.8 · 10⁸ minimum bias events

<u>Semi-electronic</u> <u>decays:</u>

- $D^0 \rightarrow e + anything$
- $D^{\pm} \rightarrow e + anything$
- $B^{\pm} \rightarrow e$ + anything
- $\Lambda_{c} \rightarrow e + anything$
- $B \rightarrow D \rightarrow e$ + anything

Electrons from Semi-electronic c/b Decays

 → FONLL b + c in agreement with data
→ Consistent with prompt charm measurement from D mesons in the low p_T-region, where charm dominates

Beauty Decay Electrons

Open Heavy Flavour from Forward Muons

Analysis Strategy

- Muon identification with muon arm
- Removal of hadrons and low p₁ secondary muons via requirement of a muon trigger signal, p₁ cut-off and DCA cut
- Subtract muons from pion and kaon decays by subtracting MC $d\mathrm{Ndp}_{_{\mathrm{T}}}$

normalized to data at low $\boldsymbol{p}_{_{\! T}}$

Acceptance and Efficiency Correction

<u>Semi-muonic</u> <u>decays:</u>

- $D^{\scriptscriptstyle 0} \to \mu \text{ + anything}$
- $D^{\scriptscriptstyle \pm} \to \mu$ + anything
- $B^{\scriptscriptstyle \pm} \to \mu \text{+}$ anything
- $B \to D \to \mu$ + anything

J/W Production Cross Section at Mid- and Forward Rapidity

Analysis Strategy

- Particle identification with muon arm or **Time-Projection Chamber**
- Invariant mass analysis: inclusive J/ψ
- Acceptance and Efficiency Correction

Data Sample

Dielectron channel: 3.9/nb

J/Y Multiplicity Studies

Conclusion and Outlook

Measurements of heavy flavour production cross sections in pp collisions

- Open Charm at forward and mid-rapidity
 - FONLL calculations agree within uncertainties, but data on high side of calculation
 - First measurement of $b \rightarrow e^{\scriptscriptstyle t}$ + anything using displaced vertex topology
- J/ψ at mid- and forward rapidity
 - Broad acceptance in rapidity; sensitivity down to zero $p_{\mbox{\tiny T}}at$ all rapidities

In progress

- Higher Statistics \rightarrow wider momentum ranges
- J/ψ
 - Polarization
 - Separate prompt and secondary J/ψ
- Measure Ψ' production at forward rapidity

backup

<u>A</u> Large Ion Collider Experiment

EMCAL

TOF

TRD

PMD

HMPID

ZDC

116m from IP

V0

T0

ACORDE

TPC

V0

T0

FMD

SZDC -116m from IP

Drift PIXEL

MUON

FILTER

TRIGGER

CHAMBERS

Strength of ALICE

Large acceptance at low p_T:

- For J/ ψ from $p_T = 0 \text{ GeV/c}$
- For open heavy flavour from $p_T = 1 \text{ GeV/c}$

Large acceptance in rapidity:

- Central barrel: -0.9 $\leq \eta \leq 0.9$
- Forward muon arm: -2.4 $\leq \eta \leq$ -4.0

Measure various final states: Hadronic, electronic and muonic

<u>Trigger</u>

Minimum bias:

- SPD or V0A or V0C
- At least one charged particle in 8 η units
- ~ 95% of $\sigma_{_{i\,nel}}$

Single-muon trigger:

- Forward muon in coincidence with Min Bias

Both activated in coincidence with the BPTX beam pickups

EPS HEP2011, Grenoble France

Yvonne Pachmayer (University of Heidelberg)

PHOS

ABSORBER

Configuration in 2010:

STRIP

ITS

DIPOLE

MAGNET

FMD

T0 & V0

TRACKING

CHAMBERS

Complete, besides TRD 39%, PHOS 60%, EMCAL 36 %

Tracking and Particle Identification Performance

Transverse Impact Parameter Resolution

- Inner Tracking System (ITS) with 6 Si Layers
 - Two pixel layers at r ≈ 3.9 and 7.6 cm
- < 75 μ m for p₁ > 1 GeV/c
- \rightarrow Allows to select displaced-vertex

Particle Identification with various systems

- TOF, TPC, TRD, EMCAL, Muon Spectrometer
- → e. g. hadronic D decays: rejection of Kaons (reduce low p_{τ} bkg)

Cross Check Beauty Decay Electron Analysis

D°: Systematic Uncertainties and Efficiency Correction

HFE: Systematic Uncertainties

