AdS/CFT and Applications:
Scattering in Planar $\mathcal{N} = 4$ SYM

Niklas Beisert
MPI für Gravitationsphysik
Albert-Einstein-Institut, Potsdam

EPS Europhysics Conference on High Energy Physics
Alpes Congrès – Alpexpo, Grenoble
26 July 2011

see J. Phys. A Special Issue (∼Sep’2011)
“Scattering Amplitudes in Gauge Theories”
Motivation

Why Scattering Amplitudes? ✓

Why $\mathcal{N} = 4$ Super Yang–Mills theory?

- very simple 4D interacting gauge theory model.
- only three parameters (g_{YM}, θ, N_c), no masses, no running: $\beta = 0$.
- for strong coupling can use AdS/CFT duality with string theory.

Why Planar Limit?

- $\mathcal{N} = 4$ SYM becomes simplest gauge theory model!
- integrability to compute observables conveniently.
- finite coupling accessible!

Together: Scattering in Planar $\mathcal{N} = 4$ SYM

- far from trivial functional dependence on particle momenta.
- similar to ordinary QFT (e.g. QCD).
- a lot of progress in recent years . . .
I. Cast of Characters
\(\mathcal{N} = 4 \) Super Yang–Mills Theory

Reminder:
- gauge field \(A_\mu \), 4 fermions \(\Psi \), 6 scalars \(\Phi \).
- gauge group typically \(SU(N_c) \).
- all fields \textit{massless} and adjoint (\(N_c \times N_c \) matrix).
- standard couplings: non-abelian gauge, \(\Psi^2 \Phi, \Phi^4 \)
- coupling constant \(g_{YM} \), topological angle \(\theta \).
- exact super\textit{conformal} symmetry \(\widetilde{PSU}(2, 2|4) \).

Supersymmetry helps:
- protects some quantities, e.g. \(\beta = 0 \), but still model far from trivial!
- \(\mathcal{N} = 4 \) susy relates all fields combine all fields into superfield.
- not care about flavours, helicities: just “scalars”!

Perturbative \(\mathcal{N} = 4 \) SYM through Feynman graphs (\textit{hard}!)
Planar Limit

Planar Limit:

- large-N_c limit: $N_c = \infty$, $g_{YM} = 0$,
 't Hooft coupling $\lambda = g_{YM}^2 N_c$ remains,
- only planar Feynman graphs,
 no crossing propagators,
- drastic combinatorial simplification.

Surface of Feynman graphs becomes 2D string worldsheet:
Strings on $AdS_5 \times S^5$

AdS/CFT Dual: Superstrings on curved $AdS_5 \times S^5$ space:

- worldsheet coupling λ, string coupling: g_s,
- weakly coupled for large λ,
- holographic duality: $\mathcal{N} = 4$ SYM on ∂AdS_5,
- symmetry: background isometries $\widetilde{PSU}(2, 2|4)$.

Planar Limit:
- no string coupling $g_s = 0$,
 no string splitting or joining.
- worldsheet coupling λ remains.
Integrability

Standard QFT approach: **Feynman graphs**
- enormously difficult at higher loops . . .
- . . . but also lower loops and many legs.

Planar $\mathcal{N} = 4$ SYM is **integrable**
- integrability vastly simplifies calculations.
- spectrum of local operators now largely understood.
- can compute observables at **finite coupling** λ.
- simple **integral equation for cusp dimension** $D_{\text{cusp}}(\lambda)$
- infinite-dimensional **Yangian algebra** $Y(\text{PSU}(2, 2|4))$.
II. Scattering in AdS/CFT
Planar Scattering in Gauge Theory

Consider colour-ordered **planar scattering** (ignore helicities/flavours)

Generic infrared factorisation for $S_n(\lambda, p)$:

$$S_n(0)(p) \exp \left(D_{\text{cusp}}(\lambda) M_n^{(1)}(p) + R_n(\lambda, p) \right)$$

Required data:
- tree level $S_n^{(0)}(p)$
- one loop factor $M_n^{(1)}(p)$ (IR-divergent)
- cusp anomalous dimension $D_{\text{cusp}}(\lambda)$
- remainder function $R_n(p, \lambda)$ (finite)

Intriguing observation for $n = 4, 5$ legs: $R_n = 0$!
- Computed/confirmed at 4 loops using unitarity.
- Exact result for scattering at finite λ! Why simple?
- Generalise to $n \geq 6$ legs! Compute exact R_n?!
Planar Scattering in String Theory

AdS/CFT provides a **string analog** for planar scattering.

Area of a minimal surface in AdS_5 . . .
. . . ending on a null polygon on ∂AdS_5.

- Identify particles with segments:
 \[p_k = \Delta x_k = x_k - x_{k-1} \]
- on-shell particles \rightarrow null segments:
 \[p_k^2 = \Delta x_k^2 = 0 \]
- momentum conservation \rightarrow closure:
 \[\sum_k p_k = \sum_k \Delta x_k = 0 \]

Note:
- Identification uses **T-duality** of $AdS_5 \times S^5$ strings.
- Functional form of exponent $M^{(1)}$ verified in string theory.
Null Polygonal Wilson Loop

AdS/CFT backwards:

- Minimal surfaces correspond to Wilson loops in gauge theory.
- Amplitudes “T-dual” to null polygonal Wilson loops

\[p_1 \quad p_2 \quad p_3 \quad p_4 \quad p_5 \]

\[x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \]

Weak/weak perturbative duality. **Tested for:**

- all 1-loop amplitudes / Wilson loops
- 2-loop 6-leg amplitude / hexagon Wilson loop
\(\mathcal{N} = 4 \) SYM is superconformal: \(\text{PSU}(2, 2|4) \) symmetry.

- Amplitudes are conformally invariant.*
- Wilson loops are conformally invariant.*

* IR/UV singularities break invariance (in a controllable fashion), see below.

Two conformal symmetries:
- different action on amplitudes and Wilson loops
 - ordinary conformal symmetry
 - dual conformal symmetry \(\updownarrow \) T-duality
- together: generate infinite-dimensional . . .
 . . . Yangian algebra \(Y(\text{PSU}(2, 2|4)) \).

Dual conformal symmetry explains simplicity:
- No dual conformal cross ratios for \(n = 4, 5 \).
- Remainder function must be trivial: \(R_n = 0 \).
III. Twistor Representation
Spinor Helicity

Dual picture of scattering leads to novel useful parametrisation.

Step 1: Spinor Helicity.

- function of constrained particle momenta \(S(p_k) \)
- particle momenta are on shell \(p_k^2 = 0 \)
- can write momentum in spinor notation as product \(p_k^{\alpha\gamma} = \lambda_k^\alpha \tilde{\lambda}_k^\gamma \).
- function of unconstrained spinor variables \(S(\lambda_k, \tilde{\lambda}_k) \).

Amplitude expressions **simplify**.

Tree amplitude for certain helicity configuration (MHV):

\[
S_n^{\text{MHV}} \sim \frac{1}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}, \quad \langle j, k \rangle := \varepsilon_{\alpha\gamma} \lambda_j^\alpha \lambda_k^\gamma.
\]

Sum of thousands of Feynman trees for large \(n \).
Momentum Twistors

Still have to satisfy momentum conservation constraint: \(\sum_k \lambda_k \tilde{\lambda}_k = 0 \).

Step 2: Momentum Twistors.

- use dual coordinates \(x_k = \sum_{j=1}^{k-1} \Delta x_j = \sum_{j=1}^{k-1} p_j = \sum_{j=1}^{k-1} \lambda_j \tilde{\lambda}_j \).

- define \(\mu_k^\dot{\alpha} := \varepsilon_{\beta\gamma} \lambda_k^\beta x_k^\gamma \dot{\alpha} \) and 4-component twistor \(W_k := (\lambda_k, \mu_k) \).

- amplitude is a function of unconstrained twistor variables \(S(W_k) \).

Many benefits:

- Map between momenta \(p_k \) and twistors \(W_k \) is 1-to-1.
- On-shell and momentum constraints automatically satisfied.
- Twistors transform as (projective) vectors of conformal SU(2, 2).
- Simple expressions for \(S(W_k) \). Recent progress based on twistors.
- Can easily compute twistors \(W_k \) from momenta \(p_k \). Then:

\[
S(p_k) = S(W_k(p_k)).
\]
Twistor Theory

What is the **meaning** of the twistor variables?

In \((3,1)\) Minkowski space:
- single twistor \(W_k\): light ray.
- all \(W_k\)'s: null polygon.
- define shape of Wilson loop.

Alternative formulation:
- Chern–Simons theory on \(CP^3\) twistor space.
- dual Wilson loop in \(CP^3\)
- matching results.
IV. Recent Progress
Grassmannian
Polytopes
Polylog Symbols
OPE
Higgs Branch
Representations
Bubble Ansatz
Null Correlators
Progress in Computation
Graßmannian Formula

Twistor space representation $A_n(W)$ ideal for complex analysis:

Poles generated by **Graßmannian integral**

k: helicity, C: $k \times n$ matrix, M_j: $k \times k$ minors of C

\[A_{n,k}(W) = \int \frac{d^{k(n-k)} C \delta^{k(4\mid 4)}(CW)}{M_1 \cdots M_n} \]

Features:

- Integral is conformal and Yangian invariant.
- Higher-loop integrands **conveniently constructible**.
- Can isolate remainder function (finite).

Still:

- order by order construction
- remaining loop integrals very difficult

Arkani-Hamed, Cachazo, Cheung, Kaplan

Drummond, Ferro

Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka

Arkani-Hamed, Bourjaily, Cachazo, Trnka
Polylogarithms and Symbols

Functional dependence on momenta:
\[
\begin{cases}
\text{tree: rational} \\
\text{1 loop: } \text{Li}_2, \log^2 \\
\text{n loops: } \text{Li}_{2n} \text{ (generalised)}
\end{cases}
\]

Problems:
- hard to compute: loop integrals.
- hard to handle: partial fractions, polylog identities.

E.g. 2 loops, 6 legs: \(R_6 = \frac{1}{17 + \varepsilon} \) pages of Goncharov polylogs

New idea: Use polylog "symbol" (differential form)

\[
\text{log } x \text{ log } y \mapsto x \otimes y + y \otimes x, \quad \text{Li}_2 x \mapsto - (1 - x) \otimes x, \quad \ldots
\]

Simplify result \(\text{symbol} \mapsto \text{polylog} \mapsto \) (few lines of ordinary polylogs)
Polytopes

Many ways to write amplitudes:
- partial fractions,
- polylog identities,
- kinematical relations.

Some features manifest, others not:
- cyclic symmetry,
- physical poles & cuts,
- limits, symmetries, ...

Why? What does it mean? Is there a perfect form?

Observation: One-loop amplitudes contain Li_2.
Li_2 also describes volume of simplex in hyperbolic space.

Proposal: Amplitude \(\simeq\) volume of curved space polytope.
Different forms of amplitude \(\simeq\) different triangulations:

- manifest symmetries hard to compute
- cyclic symmetry extra points
- no extra points no cyclic symmetry
- some symmetries some cyclic symmetry
- spurious regions

Hodges 1004.3323
Hodges 0905.1473
Bubble Ansatz

Strong coupling limit: **Minimal surface area.**
- Minimal surface for 4-sided polygon explicitly known.
- **Unclear** how to construct more sides analytically.

Idea:
- Not construct minimal surface explicitly.
- Introduce auxiliary complex parameter z (integrability).
- Study z-behaviour at boundary and cusps: complex analysis.

Complex analysis problem encodes:
- polygon data (cross ratios)
- minimal surface area.
Apply CFT tools to Wilson loop: **Operator Product Expansion.**

\[
\begin{align*}
\text{Wilson Loop OPE} & = + \int d\tau \dot{x}^\mu \delta x^\nu \frac{F_{\mu\nu}}{x} + \int \int \\
\text{Apply to multiple collinear limit} & \quad \rightarrow \\
\text{Result uses:} & \\
\bullet \text{flux tube between top/bottom WL: spinning string} \\
\bullet \text{cusp dimension,} \\
\bullet \text{excitations of flux tube/spinning string.}
\end{align*}
\]
Null Correlators

Consider further principal objects in CFT:

Correlation function of local operators \(\langle \mathcal{O}_1(x_1) \ldots \mathcal{O}_n(x_n) \rangle \)

- **tree: rational**
- **1 loop: \(\text{Li}_2, \log^2 \)**
- **\(n \) loops: \(\text{Li}_{2n} \) (generalised)**

Relation to amplitudes and null Wilson loops?

Proposal: Null separated local operators. **Triality:**

\[
\begin{align*}
A & \quad \leftrightarrow \quad S \\
\left(A \right)^2 & \quad \leftrightarrow \quad \left(S \right)^2
\end{align*}
\]
Perturbative Symmetry

Can we use conformal/Yangian symmetry to determine amplitudes?

Problem:
- IR/UV regulator breaks symmetry,
- need to understand how symmetry is violated.

Caution: Conformal symmetry already broken at tree level!
Only for singular configurations of external momenta: $p_k \parallel p_{k+1}$.

\[
\delta S = S^* \delta S^{(1)}
\]

Can correct symmetry representation (non-linear in fields).

Loops: Integrate over internal momenta, conformal violation smeared, always apparent.
Massive Regularisation

Alternative regularisation: **Higgs branch** of $\mathcal{N} = 4$ SYM:
- turn on scalar VEV,
- masses to particles,
- IR singularities regularised.

Benefits:
- dual conformal symmetry manifest.
- some physics more manifest (whereas DR ε artificial).

Relations to extra dimensions:
- **holography**: 5th coordinate from AdS_5,
- masses from higher dimensional momenta (5th, 6th component).
- cross-dimension relations for loop integrals (4D–6D).
V. Conclusions
Conclusions

Scattering Amplitudes in Planar $\mathcal{N} = 4$ Super Yang–Mills
- have exciting properties, obey interesting relations.
- integrability a key to progress.

More Concretely:
- strong coupling: minimal surface area
- duality to Wilson loops (among others)
- twistor formulation useful
- various novel methods for computing amplitudes.

Outlook:
- Hope to calculate amplitudes exactly.
- Investigate at finite coupling.
- Apply to QCD (quantitatively).

Read More:
- J. Phys. A special issue

Eps 2011, Niklas Beisert
VI. Material
Formula for 2 loops, 6 legs remainder

\[
\begin{align*}
R_{6}^{(2)}(u_1, u_2, u_3) &= \sum_{i=1}^{3} \left(L_4(x_i^+, x_i^-) - \frac{1}{2} \operatorname{Li}_4(1 - 1/u_i) \right) \\
&- \frac{1}{8} \left(\sum_{i=1}^{3} \operatorname{Li}_2(1 - 1/u_i) \right)^2 + \frac{1}{24} J^4 + \frac{\pi^2}{12} J^2 + \frac{\pi^4}{72}.
\end{align*}
\]

\[
\begin{align*}
u_1 &= \frac{s_{12} s_{45}}{s_{123} s_{345}}, & u_2 &= \frac{s_{23} s_{56}}{s_{234} s_{123}}, & u_3 &= \frac{s_{34} s_{61}}{s_{345} s_{234}}, \\
\quad x_i^\pm &= u_i x^\pm, & x^\pm &= \frac{u_1 + u_2 + u_3 - 1 \pm \sqrt{\Delta}}{2u_1u_2u_3}, \\
\Delta &= (u_1 + u_2 + u_3 - 1)^2 - 4u_1u_2u_3, \\
L_4(x^+, x^-) &= \frac{1}{8!!} \log(x^+ x^-)^4 \\
&+ \sum_{m=0}^{3} \frac{(-1)^m}{(2m)!!} \log(x^+ x^-)^m (\ell_{4-m}(x^+) + \ell_{4-m}(x^-)) \\
J &= \sum_{i=1}^{3} (\ell_1(x_i^+) - \ell_1(x_i^-)).
\end{align*}
\]