AdS/CFT and Applications: Scattering in Planar $\mathcal{N} = 4$ SYM

Niklas Beisert

MPI für Gravitationsphysik

Albert-Einstein-Institut, Potsdam

EPS Europhysics Conference on High Energy Physics Alpes Congrès – Alpexpo, Grenoble 26 July 2011

see J. Phys. A Special Issue (\sim Sep'2011) "Scattering Amplitudes in Gauge Theories"

Motivation

Why Scattering Amplitudes? 🗸

Why $\mathcal{N}=4$ Super Yang–Mills theory?

- very simple 4D interacting gauge theory model.
- only three parameters ($g_{
 m YM}$, heta, $N_{
 m c}$), no masses, no running: eta=0.
- $\bullet\,$ for strong coupling can use AdS/CFT duality with string theory.

Why Planar Limit?

- $\mathcal{N} = 4$ SYM becomes simplest gauge theory model!
- integrability to compute observables conveniently.
- finite coupling accessible!

Together: Scattering in Planar $\mathcal{N} = 4$ SYM

- far from trivial functional dependence on particle momenta.
- similar to ordinary QFT (e.g. QCD).
- a lot of progress in recent years ...

I. Cast of Characters

$\mathcal{N}=4$ Super Yang–Mills Theory

Schwarz

Reminder:

- gauge field A_{μ} , 4 fermions Ψ , 6 scalars Φ .
- gauge group typically ${
 m SU}(N_{
 m c})$
- all fields massless and adjoint ($N_{
 m c} imes N_{
 m c}$ matrix)
- standard couplings: non-abelian gauge, $\Psi^2 \Phi$, Φ^4
- coupling constant $g_{_{
 m YM}}$, topological angle heta
- exact superconformal symmetry PSU(2,2|4)

Supersymmetry helps:

- protects some quantities, e.g. $\beta = 0$, but still model far from trivial!
- N = 4 susy relates all fields combine all fields into superfield rot care about flavours, helicities: just "scalars"!

Perturbative $\mathcal{N}=4$ SYM through Feynman graphs (hard!)

Planar Limit

Planar Limit:

- large- N_c limit: $N_c = \infty$, $g_{\rm YM} = 0$, 't Hooft coupling $\lambda = g_{\rm YM}^2 N_c$ remains,
- only planar Feynman graphs, no crossing propagators,
- drastic combinatorial simplification.

Surface of Feynman graphs becomes 2D string worldsheet:

Strings on $AdS_5 imes S^5$

AdS/CFT Dual: Superstrings on curved $AdS_5 \times S^5$ space: [Maldacena hep-th/9711200]

- worldsheet coupling λ , string coupling: $g_{\rm s}$,
- weakly coupled for large λ ,
- holographic duality: $\mathcal{N} = 4$ SYM on ∂AdS_5 ,
- symmetry: background isometries $\widetilde{PSU}(2,2|4)$.

Planar Limit:

- no string coupling $g_s = 0$, no string splitting or joining.
- worldsheet coupling λ remains.

 AdS_5

Integrability

- enormously difficult at higher loops ...
- ... but also lower loops and many legs.

Planar $\mathcal{N} = 4$ SYM is **integrable** see review collection [NB et al. 1012.3982]

- integrability vastly simplifies calculations.
- spectrum of local operators now largely understood.
- can compute observables at finite coupling λ .
- simple integral equation for cusp dimension $D_{\text{cusp}}(\lambda)$
- infinite-dimensional Yangian algebra Y(PSU(2,2|4)).

II. Scattering in AdS/CFT

Planar Scattering in Gauge Theory

Consider colour-ordered planar scattering (ignore helicities/flavours)

Generic infrared factorisation for $S_n(\lambda, p)$:

 $S_n^{(0)}(p) \exp\left(D_{\text{cusp}}(\lambda)M_n^{(1)}(p) + R_n(\lambda, p)\right)$

Required data:

- tree level $S_n^{(0)}(p)$
 - one loop factor $M_n^{(1)}(p)$ (IR-divergent)
 - cusp anomalous dimension $D_{\text{cusp}}(\lambda)$
 - remainder function $R_n(p,\lambda)$ (finite)

Intriguing observation for n = 4, 5 legs: $R_n = 0!$

- Computed/confirmed at 4 loops using unitarity.
- Exact result for scattering at finite λ ! Why simple?
- Generalise to $n \ge 6$ legs! Compute exact R_n ?!

Anastasiou, Bern Dixon, Kosower

Planar Scattering in String Theory

AdS/CFT provides a string analog for planar scattering.

Area of a minimal surface in AdS_5 ending on a null polygon on ∂AdS_5 . • Identify particles with segments:

 $p_k = \Delta x_k = x_k - x_{k-1}$

• on-shell particles \rightarrow null segments:

 $p_k^2 = \varDelta x_k^2 = 0$

• momentum conservation \rightarrow closure:

 $\sum_{k} p_k = \sum_{k} \Delta x_k = 0$

Note:

- Identification uses T-duality of $AdS_5 \times S^5$ strings.
- Functional form of exponent $M^{(1)}$ verified in string theory.

Alday Maldacena

Null Polygonal Wilson Loop

AdS/CFT backwards:

Orummond Korchemsky Sokatchey

- Minimal surfaces correspond to Wilson loops in gauge theory.
- Amplitudes "T-dual" to null polygonal Wilson loops

 $\mathsf{Weak}/\mathsf{weak}$ perturbative duality. Tested for:

- all 1-loop amplitudes / Wilson loops
- 2-loop 6-leg amplitude / hexagon Wilson loop

Dual Conformal and Yangian Symmetries

- $\mathcal{N} = 4$ SYM is superconformal: PSU(2, 2|4) symmetry.
 - Amplitudes are conformally invariant.*
 - Wilson loops are conformally invariant.*
 - IR/UV singularities break invariance (in a controllable fashion), see below.

Two conformal symmetries:

- different action on amplitudes and Wilson loops
- ordinary conformal symmetry dual conformal symmetry T-duality
- together: generate infinite-dimensional ... [NB, Ricci Tseytlin, Wolf ... Yangian algebra Y(PSU(2,2|4)).

- Dual conformal symmetry **explains simplicity**:
 - No dual conformal cross ratios for n = 4, 5.
 - Remainder function must be trivial: $R_n = 0$.

III. Twistor Representation

Spinor Helicity

Dual picture of scattering leads to novel useful parametrisation.

Step 1: Spinor Helicity.

- function of constrained particle momenta $S(p_k)$
- particle momenta are on shell $p_k^2 = 0$
- can write momentum in spinor notation as product

• function of unconstrained spinor variables
$$S(\lambda_k, ilde\lambda_k)$$

Amplitude expressions simplify.

Tree amplitude for certain helicity configuration (MHV):

$$S_n^{\text{MHV}} \simeq \frac{1}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}, \qquad \langle j, k \rangle := \varepsilon_{\alpha \gamma} \lambda_j^{\alpha} \lambda_k^{\gamma}.$$

 $p_{\mu}^{\alpha\dot{\gamma}} = \lambda_{\mu}^{\alpha}\tilde{\lambda}_{\mu}^{\dot{\gamma}}.$

Sum of thousands of Feynman trees for large n.

 $\lambda_1, \tilde{\lambda}_1$

Parke Berends Taylor Giele

Momentum Twistors

Still have to satisfy momentum conservation constraint: $\sum_{k} \lambda_k \tilde{\lambda}_k = 0$. **Step 2:** Momentum Twistors. $\begin{bmatrix} Hodges \\ 0905.1473 \end{bmatrix} \begin{bmatrix} Mason \\ Skinner \end{bmatrix}$

- use dual coordinates $x_k = \sum_{j=1}^{k-1} \Delta x_j = \sum_{j=1}^{k-1} p_j = \sum_{j=1}^{k-1} \lambda_j \tilde{\lambda}_j.$
- define $\mu_k^{\dot{lpha}} := \varepsilon_{\beta\gamma} \lambda_k^{\beta} x_k^{\gamma \dot{lpha}}$ and 4-component twistor $W_k := (\lambda_k, \mu_k)$.
- amplitude is a function of unconstrained twistor variables $S(W_k)$.

Many benefits:

- Map between momenta p_k and twistors W_k is 1-to-1.
- On-shell and momentum constraints automatically satisfied.
- Twistors transform as (projective) vectors of conformal SU(2,2).
- Simple expressions for $S(W_k)$. Recent progress based on twistors.
- Can easily compute twistors W_k from momenta p_k . Then:

 $S(p_k) = S(W_k(p_k)).$

Twistor Theory

What is the meaning of the twistor variables?

- In (3,1) Minkowski space:
 - single twistor W_k : light ray.
 - all W_k 's: null polygon.
 - define shape of Wilson loop.

Alternative formulation:

- Mason Skinner
- Chern–Simons theory on CP^3 twistor space.
- dual Wilson loop in $\mathbb{C}P^3$
- matching results.

IV. Recent Progress

Progress in Computation

Graßmannian Formula

Twistor space representation $A_n(W)$ ideal for complex analysis: Poles generated by **Graßmannian integral** [Arkani-Harmed, Cachazo] [k: helicity, $C: k \times n$ matrix, $M_j: k \times k$ minors of C]

$$A_{n,k}(W) = \int \frac{d^{k(n-k)}C\,\delta^{k(4|4)}(CW)}{M_1\cdots M_n}$$

Features:

- Integral is conformal and Yangian invariant.
- Higher-loop integrands conveniently constructible.
- Can isolate remainder function (finite).

Still:

- order by order construction
- remaining loop integrals very difficult

Polylogarithms and Symbols

Functional dependence on momenta: $\begin{cases} \text{tree: rational} \\ 1 \text{ loop: } \text{Li}_2, \text{ log}^2 \\ n \text{ loops: } \text{Li}_{2n} \text{ (generalised)} \end{cases}$

Problems:

- hard to compute: loop integrals.
- hard to handle: partial fractions, polylog identities.

Polytopes

Many ways to write amplitudes:

- partial fractions,
- polylog identities,
- kinematical relations.

Some features manifest, others not:

- cyclic symmetry,
- physical poles & cuts,
- limits, symmetries, ...

Why? What does it mean? Is there a perfect form?

Observation: One-loop amplitudes contain Li_2 . Li_2 also describes volume of simplex in hyperbolic space.

Proposal: Amplitude \simeq volume of curved space polytope. Different forms of amplitude \simeq different triangulations:

cyclic symmetry extra points

no extra points no cyclic symmetry

some symmetries some cyclic symmetry

Hodges 1004.3323

spurious regions

Bubble Ansatz

Strong coupling limit: Minimal surface area.

- Minimal surface for 4-sided polygon explicitly known.
- Unclear how to construct more sides analytically.

Idea:

- Not construct minimal surface explicitly.
- Introduce auxiliary complex parameter z (integrability).
- Study *z*-behaviour at boundary and cusps: complex analysis.

Complex analysis problem encodes:

- polygon data (cross ratios)
- minimal surface area.

Wilson Loop OPE

Apply CFT tools to Wilson loop: Operator Product Expansion.

$$= - + \int d\tau \, \dot{x}^{\mu} \, \delta x^{\nu} - F_{\mu\nu} + \iint - \times - \times$$

Apply to multiple collinear limit

Alday, Gaiotto Maldacena Sever, Vieira

Result uses:

- flux tube between top/bottom WL: spinning string
- cusp dimension,
- excitations of flux tube/spinning string.

Gubse

Klebanov Polyakov

NB, Eden Staudacher

Rasso

Null Correlators

Consider further principal objects in CFT: Correlation function of local operators $\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle$

C x_3 dependence $\begin{cases}
 tree: rational \\
1 loop: Li_2, log^2 \\
n loops: Li_{2n} (generalised)
\end{cases}$

Relation to amplitudes and null Wilson loops? **Proposal:** Null separated local operators. Triality: [Alday, Eden, Korchemsky] [Korchemsky] [Korchemsky]

$$\begin{array}{c} \hline C \\ \hline C \\ \hline \end{array} \begin{array}{c} \leftarrow \end{array} \\ \leftarrow \end{array} \\ \begin{pmatrix} \hline A \\ \uparrow \\ \uparrow \\ \begin{pmatrix} - \\ S \\ \hline \end{array} \end{pmatrix}^2$$

Perturbative Symmetry

Can we use conformal/Yangian symmetry to determine amplitudes? **Problem:**

- IR/UV regulator breaks symmetry,
- need to understand how symmetry is violated.

Caution: Conformal symmetry already broken at tree level! [Castan Swreed Swr

 Can correct symmetry representation (non-linear in fields).
 [Bargheer, NB, Galleas]

 Loops:
 Integrate over internal momenta,
 [Sever] [McLoughlin, Plefka]

 conformal violation smeared, always apparent.
 [Sever] [McLoughlin, Plefka]

Massive Regularisation

- Alternative regularisation: **Higgs branch** of $\mathcal{N} = 4$ SYM:
 - turn on scalar VEV,
 - masses to particles,
 - IR singularities regularised.

Benefits:

- dual conformal symmetry manifest.
- some physics more manifest (whereas DR ε artificial). [^H_{Sch}

Relations to extra dimensions:

- holography: 5^{th} coordinate from AdS_5 ,
- masses from higher dimensional momenta (5th, 6th component).
- cross-dimension relations for loop integrals (4D–6D).

Alday, Henn Plefka Schuster

V. Conclusions

Conclusions

Scattering Amplitudes in Planar $\mathcal{N}=4$ Super Yang–Mills	
• have exciting properties, obey interesting rela	tions. 1105.0771
 integrability a key to progress. 	1103.3477
More Concretely:	1103.1869
 strong coupling: minimal surface area 	1103.3298
 duality to Wilson loops (among others) 	[Ita]
• twistor formulation useful	1012.4493
• various novel methods for computing amplitu	des 1104.3873
	1104.2890
Outlook:	1012.3401
 Hope to calculate amplitudes exactly. 	1107.4544
 Investigate at finite coupling. 	1103.1016
 Apply to QCD (quantitatively). 	1104.0700
Pood Morey • J. Phys. A special issue	1104.0816
• Lett. Math. Phys. special issue	arxiv:1012.3982

VI. Material

$17 + \varepsilon$ Pages

Few Lines

Formula for 2 loops, 6 legs remainder

Goncharov, Spradlin Vergu, Volovich

$$R_6^{(2)}(u_1, u_2, u_3) = \sum_{i=1}^3 \left(L_4(x_i^+, x_i^-) - \frac{1}{2} \operatorname{Li}_4(1 - 1/u_i) \right)$$
$$- \frac{1}{8} \left(\sum_{i=1}^3 \operatorname{Li}_2(1 - 1/u_i) \right)^2 + \frac{1}{24} J^4 + \frac{\pi^2}{12} J^2 + \frac{\pi^4}{72}.$$

$$\begin{split} u_1 &= \frac{s_{12}s_{45}}{s_{123}s_{345}}, \quad u_2 &= \frac{s_{23}s_{56}}{s_{234}s_{123}}, \quad u_3 &= \frac{s_{34}s_{61}}{s_{345}s_{234}}, \\ L_4(x^+, x^-) &= \frac{1}{8!!}\log(x^+x^-)^4 \\ &+ \sum_{m=0}^3 \frac{(-1)^m}{(2m)!!}\log(x^+x^-)^m(\ell_{4-m}(x^+) + \ell_{4-m}(x^-)) \\ \end{bmatrix} \quad \begin{aligned} x_i^+ &= u_i x^\pm, \quad x^\pm &= \frac{1+(-1)^2}{2u_1u_2u_3}, \\ \Delta &= (u_1 + u_2 + u_3 - 1)^2 - 4u_1u_2u_3, \\ \ell_n(x) &= \frac{1}{2}\left(\operatorname{Li}_n(x) - (-1)^n\operatorname{Li}_n(1/x)\right), \\ J &= \sum_{i=1}^3(\ell_1(x_i^+) - \ell_1(x_i^-)). \end{split}$$