Accelerator Neutrino Physics

prepared with help from many colleagues of MiniBooNE, Minos, ICARUS, Opera, Minerva, Nova, T2K and other collaborations

> Koichiro Nishikawa KEK/J-PARC 2011 EPS meeting@Grenoble 2011.7.26

> > 1

- New results
 - $-v_e$ appearance
 - v_{μ} disappearance
- Questions remain to be solved
 - v_{τ} appearance
 - sterile neutrinos ?
 - Δm^2 (neutrino)≠ Δm^2 (anti-neutrino)?
- Flux & cross section
 - particle productions measurements
 - neutrino cross sections measurements
- Future projects
 - Long baseline
 - Beta beam
 - Neutrino factory
- Issues for accelerator

Present status of the measurements of mixing parameters in three generation

Six independent parameters

$$\theta_{12} \quad \begin{array}{l} \nu_{1} \text{ to be the largest component in } \nu_{e} \qquad \theta_{12} < \pi/4 \\ \text{ solar neutrino experiments, reactor (KamLAND)} \\ \text{ matter effect fix the sign of m}^{2}_{12} \text{ , } \nu_{1} \text{ the lighter one} \\ \Delta m_{12}^{2} = m_{2}^{2} - m_{1}^{2} = 7.65^{+0.23}_{-0.02} \times 10^{-5} \text{ eV}^{2} \left(\Delta m_{12}^{2} > 0 \right) \qquad \sin^{2} \theta_{12} = 0.304^{+0.022}_{-0.016} \end{array}$$

 $\theta_{23} \quad \begin{array}{l} \text{atmospheric neutrino (SK), long-baseline (K2K, MINOS)} \\ \text{No matter effect has been measured} \\ \sin^2\theta_{23} > 0.93 \ 90\% \text{CL (SK)} \quad \theta_{23} = 45^0 \pm 5^0 \\ |\Delta m_{23}^2| = 2.32^{+0.12} \text{ }_{-0.08} \text{ x } 10^{-3} \text{ eV}^2 \ (\pm \text{ unkown}) \end{array}$

$$\theta_{13} \quad \begin{array}{l} \nu_{1} \text{ to be the larger component in } \nu_{e} & \theta_{13} < \pi/4 \\ \text{CHOOZ 90\%CL allowed region} \\ |\Delta m^{2}_{13}| \sim 2.3 \times 10^{-3} \text{ eV}^{2} (\pm \text{unknown}) \\ \sin^{2}2\theta_{13} < 0.16 \text{ (upper limit)} \end{array}$$

New results from the TZR experiment

Claudio Giganti (Barcelona) on behalf of the T2K Collaboration

EPS-HEP 2011 - Grenoble (France) July 21, 2011

Neutrino energy reconstruction and beam with small high energy tail in T2K

Reconstructed ν Energy for 1-ring FC μ

Super-Kamiokande event selection **J2**K

- Predefined event selection for V_{μ} and V_{e}
- First steps that are common:
 - SK synchronized to beam timing using GPS
 - Fully contained events in the Inner Detector, minimal activity in the Outer Detector
 - Starting in the FV (FCFV)
 - Number of rings = 1
 - PID algorithm to distinguish e-like and µ-like events

SK v_e event reduction

Number of expected events

We observed $6 V_e$ candidates

The expected number of events from un-oscillated neutrinos is 1.5

Source	Nexp	
Beam V _e	0.8	
ν_{μ} Neutral Current	0.6	
ν_{μ} Charged Current	0.1	
Total	1.5±0.3	

Syst for $\theta_{13}=0 \rightarrow \text{Nexp} = 1.5\pm0.3$

error source		syst. error
	ν flux	$\pm 8.5\%$
	ν int. cross section	$\pm 14.0\%$
	Near detector	$^{+5.6}_{-5.2}\%$ -
	Far detector	$\pm 14.7\%$
	Near det. statistics	$\pm 2.7\%$
To	otal	$^{+22.8}_{-22.7}\%$

Dominated by hadron production NA61

- Dominated by FSI and NC π 0 crosssection uncertainties
- ND280 dominated by TPC tracking efficiency and ionization in the gas
- SK dominated by ring counting, PID

lulv 21, 201

Ve appearance analysis

- Probability of observing 6 events if $sin^2(2\theta_{13})=0 \rightarrow 0.7\%$ (2.5 σ significance)
- Feldman-Cousins unified method used to produce the confidence intervals
- Solution For sin²($2\theta_{23}$)=1 and Δm^2_{23} =2.4x10⁻³ eV²:
 - 🚷 Normal hierarchy, δ=0:
 - Best fit $\rightarrow \sin^2(2\theta_{13})=0.11$ and $0.03 < \sin^2(2\theta_{13}) < 0.28$ at 90% C.L.
 - Solution: Inverted hierarchy, $\delta = 0$:
 - Best fit \rightarrow sin²(2 θ_{13})=0.14 and 0.04<sin²(2 θ_{13})<0.34 at 90% C.L.

v_{μ} disappearance measurement

Single μ events

- Observed events at SK satisfying V_µ disappearance criteria: 31
- Solution parameters extracted from an oscillation fit on $E(v)^{rec}$
- The oscillation pattern due to the disappearance of V_{μ} is clearly visible in the reconstructed energy spectrum \rightarrow advantage of using off-axis configuration

Comparison with SK and MINOS **TZK**

T2K results are in good agreement with results from SK and MINOS

Anna Holin University College London

22.07.2010

10

[•]UCL

2

Electron Neutrino Analysis Procedure

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}\theta_{23} \sin^{2}(\frac{\Delta m_{atm}^{2}L}{4E})$$

- Determine the criteria for selecting electron neutrino CC events from a background of predominantly NC events
- Translate the observed ND data spectrum into a background prediction for the FD
- Compare the data to the prediction and fit observed spectrum to obtain final exclusion limits
- New for this analysis: shape fitting in 15 bins 3 bins in PID and 5 in energy

UCL

Near Detector Background Decomposition

To calculate each background component, ND data taken in different beam configurations can be used:

17

DCL

Region Allowed by Fit

MINOS has updated its electron neutrino appearance analysis for an exposure of 8.2 × 10²⁰ POT, with shape fitting and a new selection variable

Sin²(2 θ_{13})<0.12 for normal mass hierarchy, <0.19 for inverted hierarchy, at 90% C.L., for δ =0

 $Sin^{2}(2\theta_{13})=0.04$ (0.08) are the best fit values

 $Sin^{2}(2\theta_{13})=0$ excluded at 89% C.L.

For the first time, an experiment has been able to exclude beyond the Chooz limit in all of the parameter space for the normal 0.4 mass hierarchy

8

[•]UCL

Muon Neutrino Disappearance

Muon neutrinos are observed to disappear as they travel. The most precise result in Δm^2 was obtained by MINOS:

Present Knowledge

 $\theta_{12} \quad \begin{array}{l} \nu_{1} \text{ to be the largest component in } \nu_{e} \qquad \theta_{12} < \pi/4 \\ \text{ solar neutrino experiments, reactor (KamLAND)} \\ \text{ matter effect fix the sign of m}^{2}_{12} \text{ , } \nu_{1} \text{ the lighter one} \\ \Delta m_{12}^{2} = m_{2}^{2} - m_{1}^{2} = 7.50^{+0.17}_{-0.23} \times 10^{-5} \text{ eV}^{2} \left(\Delta m_{12}^{2} > 0 \right) \qquad \sin^{2} \theta_{12} = 0.304^{+0.022}_{-0.016} \end{array}$

atmospheric neutrinos (SK), long-baseline (MINOS,T2K) No matter effect has been measured $\sin^2 2\theta_{23} > 0.9 \quad 90\%$ CL (SK) $\theta_{23} = 45^0 \pm 5^0$ $|\Delta m_{23}^2| = 2.32^{+0.12}_{-0.08} \times 10^{-3} \text{ eV}^2 (\pm \text{unkown})$

 $\begin{aligned} & v_{1} \text{ to be the larger component in } v_{e} & \theta_{13} < \pi/4 \\ & |\Delta m^{2}_{13}| \sim 2.3 \times 10^{-3} \text{ eV}^{2} \text{ (\pm unknown$)} \end{aligned} \\ \theta_{13} & \begin{array}{c} T2K \ 90\% \text{CL allowed region} \\ & 0.03 < \sin^{2}2\theta_{13} < 0.28 \ \text{(N.H.)} \\ & 0.04 < \sin^{2}2\theta_{13} < 0.34 \ \text{(I.H.)} \end{array} \end{aligned} \\ & \begin{array}{c} \text{MINOS allowed region} \\ & \sin^{2}2\theta_{13} = 0 \ \text{excluded at } 89\% \text{CL} \\ & < 0.12 \ \text{(N.H.)}, < 0.19 \ \text{(I.H.)} \\ & 22 \end{array} \end{aligned}$

baseline neutrino experiment

On behalf of the OPERA Collaboration S.Dusini – INFN Padova

Paper submitted to Physics Letter B, (arXiv:1107.2594 [hep-ex]).

EPS-HEP 2011 - Grenoble

S.Dusini - INFN Padova

Updated OPERA sensitivity

Including all the improvements in the analysis

Decay channel	Number of signal events expected for Dm ² = 2.5×10 ⁻³ eV ²			
	22.5×10 ¹⁹ p.o.t.	Analysed sample		
τ→μ	1.79	0.39		
τ→ε	2.89	0.63		
$\tau \rightarrow h$	2.25	0.49		
$\tau \rightarrow 3h$	0.71	0.15		
Total	7.63	1.65		

In the analyzed sample (92% of '08+'09 data) one v_{τ} observed in the $\tau \rightarrow h$ channel compatible with the expectation of 1.65 signal events.

Summary of background

Very clean channel

Decay	Number of background events for:							
channel	22.5×10 ¹⁹ p.o.t.			Analysed sample				
	Charm	Hadron	Muon	Total	Charm	Hadron	Muon	Tota
τ→μ	0.025	0.00	0.07	0.09±0.04	0.00	0.00	0.02	0.02±0.01
$\tau \rightarrow e$	0.22	0	0	0.22±0.05	0.05	0	0	0.05±0.01
τ→h	0.14	0.11	0	0.24±0.06	0.03	0.02	0	0.05±0.01
$\tau \rightarrow 3h$	0.18	0	0	0.18±0.04	0.04	0	0	0.04±0.01
Total	0.55	0.11	0.07	0.73±0.15	0.12	0.02	0.02	0.16±0.03

The expected background in the $\tau \rightarrow h$ channel is 0.05 ± 0.01 The probability of a background fluctuation up to at least one event is 5%. The total expected background is 0.16 ± 0.03 and the probability a background fluctuation is 15%.

EPS-HEP 2011 - Grenoble

S.Dusini - INFN Padova

17

One event was observed so far, which is consistent with 1.65 events expected

Can close the chapter ?

Questions remained to be solved

- v_{μ} disappearance
- $3^{rd} \Delta m^2$ region ?
 - LSND, MiniBooNE(anti-neutrino data)
 - Possible difference of mass eigenvalues in neutrinos and anti-neutrinos

Current: 5.66E20 POT: E > 475 MeV

26

Sterile neutrinos with ICARUS

- ICARUS@LNGS can search for sterile neutrinos through $v_{\mu} > v_{e}$ appearance in the 10<E_v<30 GeV window:
- Signal well above intrinsic v_econtamination
- No effect from ν_µ->ν_τ-> e and NC in this energy region
- For ∆m²=0.4 eV² and sin²2θ=0.02 signal ~ 30 events, bkg ~ 12 A significant fraction of LSND parameter

Also MicroBooNE at Fermilab

DEDICATED EXPERIMENT PROPOSED AT CERN-PS:

- From 2013, after CNGS shutdown
- Identical near(T150) and far(ICARUS T600) LAr TPCs
- Capability to cover all LSND parameter space with v and anti-v
- Disappearance measurements using v_e contamination

9

[•]UCL

Muon Anti-Neutrino Disappearance

By reversing the horn current, NuMI can create an anti-neutrino beam, can analyze the resulting data in a similar way to the neutrino data

Works for improving neutrino experiments

Available observables are always flux times cross section

NA61 experiment in CERN/SPS

- ~140 physicists from 25 institutes
- 31 GeV/c secondary hadron beam
- One of main goals: Hadron production in p-C interaction to improve the prediction for the neutrino flux in T2K
- Tracking detectors: 5 TPCs and 3 MWPCs (beam telescope)
- Particle identification: TPC (*dE/dx*) and TOF

MINER_vA Detector

Future accelerator neutrino experiments

12:10	Long Baseline Neutrino Oscillation Experiments	RUBBIA, Andre
12:30	Beta Beams	WILDNER, elena
12:45	Neutrino oscillation physics with a Neutrino Factory	SOLER, Paul

General requirements

A general view in neutrino physics with accelerator

- Neutrino oscillation studies are still at the stage, equivalent to the discovery of K_L in cosmic rays (Gell-Mann Pais concept of K_L: co-existence of mass and strong eigen-states)
 - Flavor and mass eigen-states with different masses co-exist and mix.
 - Neutrino oscillation between flavor eigen-states exist.and mix
- The unexpected discovery of CP violation in neutral kaon system
- CPV is one of the necessary ingredients of matter dominated Universe, motivated rigorous experimental studies
- Kobayashi-Maskawa theory explain both CPV in K, B in term of 3 angles and 1 phase in the 3x3 mixing matrix without 'new interaction'
- The studies of CPV in neutrinos will start with an analogy of K.M. theory. i.e. complex phase in 3x3 PMNS matrix.
- how to prove the effects is due to KM type complex phase ?
- Are there additional CPV source in leptons?
 - No bug constant, no long distance effects, no need for final state int., etc₃₂

3 generation light neutrinos (+ Heavy neutrinos(SeeSaw))

light neutrinos 9 parameters

- neutrino masses
 - $-m_1 m_2 m_3$
- mixing angles
 - θ_{12} θ_{23} θ_{13}
- CP phase
 - $-\delta$
- Majorana phases
 - $-\phi_1\phi_2$

• squared-differences

$$- \delta m_{12}^2 \delta m_{13}^2 (\equiv m_3^2 - m_1^2)$$

mixing angles

$$- \theta_{12} \theta_{23} \theta_{13}$$

• CP phase

$$-\delta$$

Majorana phases

- <u>no sensitivity</u>

Heavy right-handed neutrinos

$$N_1 \xrightarrow{v_i}_{h_{1j}} \xrightarrow{v_i}_{H}$$
 $N_1 \xrightarrow{h_{1k}}_{k} \xrightarrow{N_l}_{k} \xrightarrow{N_l}_{h_{lk}} \xrightarrow{v_i}_{h_{lk}} \xrightarrow{N_l}_{h_{lk}} \xrightarrow{v_i}_{h_{lk}}$

Leptogenesis

$$\varepsilon = \frac{\Gamma(N_1 \rightarrow v_i H) - \Gamma(N_1 \rightarrow v_i H)}{\Gamma(N_1 \rightarrow v_i H) + \Gamma(N_1 \rightarrow v_i H)} \neq 0$$
Complex h_{ij}'s 33

Advantage of $v_{\mu} \rightarrow v_{e}$ at around 2.5x10⁻³ eV² δ : CP Violation in Lepton Sector in 3 generations scheme

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j>i} \operatorname{Re}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin^{2}\frac{(m_{j}^{2} - m_{i}^{2})L}{4E_{v}}$$
$$\mp 2\sum_{j>i} \operatorname{Im}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin\frac{(m_{j}^{2} - m_{i}^{2})L}{2E_{v}}$$

 $CPV \propto \sin\theta_{12} \sin\theta_{23} \sin\theta_{13} \Delta m_{12}^2 (L/E) \sin\delta$

- ve disappearance 1- P_{ee} : $\alpha = \beta |U_{\alpha i}|^2$ Real
- $v_{\mu} \rightarrow v_{e}$: interference of two Δm^{2} 's (small U_{e3} small Δm_{12}^{2}) Two comparable terms $\rightarrow CPV$
- Δm_{12}^2 term gives relatively larger contribution at longer distance

International Europhysics Conference on High Energy Physics, July 2011

CP violating effects in neutrino oscillation in 3 generation scheme

- 3 mixing angle, $2 \Delta m^2$, matter density and distance, E_v fix the contribution to the neutrino and anti-neutrino oscillation probabilities. must be separated from CPV term.
- If KM type CPV is the source, measurements in neutrinos and anti-neutrinos should sit on either pink or blue ellipse in the right figure
- With mass hierarchy ambiguity, may need measurements at more that one condition (energies or distances)

An implication of larger θ_{13} matter effect become not negligible

At longer distance

Or determine mass hierarchy by measurements at different distances

EU, Japan, US world tour

	Proton driver	Baseline L	Detector / Fiducial mass	Method
LAGUNA Fréjus	CERN SPL 4MW	130 km	WC 440kt (MEMPHYS) (*)	v/\overline{v} asymmetry
J-PARC- Kamioka	J-PARC MR (1.66MVV)	295 km	WC 600kt (HyperK)	v/v asymmetry
J-PARC- Okinoshima	J-PARC MR (1.66MW)	658 km	LAr 100 kt	WBB
LBNE	FNAL MI 750kW (2.3MW ProjectX)	1300 km	WC 200kt or LAr 34kt	WBB
LAGUNA Slanic (**)	CERN SPS 700kW (1.6MW HP-PS)	1570 km	LAr 100 kt	WBB
LAGUNA Pyhäsalmi	CERN SPS 700kW (1.6MW HP-PS)	2300 km	LAr 100 kt (*)	WBB

(*) physics reach of LENA option under investigation in LAGUNA - not considered here (**) site provides only shallow depth - lower priority

Andre Rubbia

All based on the powerful accelerator Critical path toward high power operation-(J-PARC case)

Space charge

Beam power is limited by beam loss, rep. rate

- 150kW at 30GeV at 0.3Hz correspond to $\sim 10^{14}$ protons/5µsec pulse $\sim 10^{13}$ protons/500nsec bunch
- At what intensity, does the space charge effect become non-linear
 - MR Beam break-up instabilities observed in MR at 1.5e13 ppb (design is 4 e13 ppb). Behavior similar to other high intensity accelerators driven by broadband impedance and/or electron cloud. (J-PARC ATAC report)
 - RF with 2nd harmonic installed

Long term project

- Work on more systematic studies on the nature of collective instabilities and impedance sources including possible electron cloud effects, rapid cycling, power supply, RF system ...
- LINAC 400MeV upgrade
- Availability and operational experience

New kind of neutrino beam

CERN Beta Beams, Synoptic

Status, technologies

- SF in Decay Ring (CERN, Cockroft)
 - RF hardware seems feasible
- 60 GHz Ion Source (LPSC, CNRS, Grenoble)
 - Tests of magnetic field for plasma containment ok
 - Tests of assembly with 28 GHz (emmittances and efficiencies)
 - 60 GHz gyrotron: awaiting reception 2012
- Collection of high-Q ions from production ring (UCL, Louvain)
 - Collection ok
 - Efficiencies now measured
- Measurements of x-sections 8B and 8Li (INFN, Legnaro)
 - Analysis of results available in September
- Decay Ring Redesigned (CEA)
 - Collective effects less important
- Collimation in Decay Ring (CERN)
 - Needs good solution

Optimization of the facility on-going

Neutrino Factory Baseline

- Two Magnetised Iron Neutrino Detectors (MIND):
 - 100 kton at 2500-5000 km
 - 50 kton at 7000-8000 km

Baseline constantly under review in light of new physics results

Summary for neutrino factory presentation

- International Design Study is progressing on course
 - Interim Design Report delivered March 2011
 - We had successful ECFA review May 2011 (final report due soon)
 - On target to produce Reference Design Report, including performance and costs by 2013
- Main concepts for accelerator systems have been defined
 - Main areas of work are at interfaces between components
- Two Magnetised Iron Neutrino Detectors (MIND) at standard Neutrino Factory (25 GeV) is small θ_{13} baseline:
 - 2500-5000 km with100 kton mass
 - 7000-8000 km (magic baseline) with 50 kton
- 10 GeV Neutrino Factory with one 100 kton MIND shows best performance for large θ_{13} (sin² θ_{13} > 10⁻²)
- Conceptual design for near detector being established

Summary

- Precision measurements of oscillation mixing parameters
 - − indication of $\theta_{13} \neq 0$
 - establish $\theta_{13} \neq 0$ and its value,
 - $\Box \quad \theta_{23} = 45^{0?}, \Delta m_{23}^{2}$
 - confirmation of $v_{\mu} v_{\tau}$ oscillation
- Sterile neutrinos?
- Mass eigenvalues different for neutrino and anti-neutrino?
- Works on hadron production and cross section measurements
- Search for CP violating effects in neutrino oscillation and its source ?
 - KM type complex phase in 3x3 PMNS matrix
 - additional source ?
- >1MW proton accelerator
- High power neutrino beam, capable to deliver neutrino over ~1000km baseline to deal with matter effect
- Massive detector, capable neutrino energy reconstruction and lepton ID for wide range of $\rm E_v$ 47

The J-PARC accelerator and T2K experiment will be back into operation in December this year.I thank you for the messages of solidarity and sympathy.

Thank you for your attention