Non-accelerator neutrino experiments

(selective) report of recent results and achievements

EPS HEP conference Grenoble, 26 July 2011

Stefan Schönert Physik Department E15 Technische Universität München

Many thanks to:

T. Lasserre, A. Palazzo, K. Heeger, Inouesan, M. Marino, G. Gratta, A. Giuliani, O. Cremonesi, F. Piquemal, G. Drexlin

for up-to-date information, discussions and slides – also for the many slides not used!

Outline

- Updates from solar & reactor vexperiments on mixing
- θ_{13} search at nuclear reactors
- Reactor v-anomaly & sterile v's
- Kinematical v-mass measurement
- $0\nu\beta\beta$ decay experiments

Outline

- Updates from solar & reactor vexperiments on mixing
- θ_{13} search at nuclear reactors
- Reactor v-anomaly & sterile v's
- Kinematical v-mass measurement
- $0\nu\beta\beta$ decay experiments

Non-accelerator experiments

PAST: 2-flavor analysis

small θ_{13} , favorable mass splitting & limited precision

Non-accelerator experiments

Recent years: 3-flavor analysis small θ_{13} , favorable mass splitting & high precision

Precision measurements of solar and reactor neutrinos with SNO, Super-K, KanLAND. Borexino

Tensions between solar & KL data in 2-flavor analysis

First pointed out in 2008: global analysis provided a preference for $\theta_{13} > 0$ at 90% C.L.

Fogli, Lisi, Marrone, A.P, Rotunno, PRL 101, 141801 (2008), [arXiv:0806.2649].

Global 3v analysis inclusive T2K and Minos results

Precision measurement of solar ⁷Be with Borexino

Outline

- Updates from solar & reactor vexperiments on mixing
- θ_{13} search at nuclear reactors
- Reactor v-anomaly & sterile v's
- Kinematical v-mass measurement
- $\mathbf{0}_{\nu\beta\beta}$ decay experiments

- Electron antineutrinos emitted through Decays of Fission Products of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
- Nuclear reactors $\therefore 1 \text{ GW}_{\text{th}} \Leftrightarrow 2 \ 10^{20} \ \bar{\nu}/\text{s}$
- Neutrino Luminosity : $N_{ar{
 u}}=\gamma(1+k)P_{
 m th}$

γ: reactor constant

k : fuel evolution correction up to 10%

Neutrino detection

Inverse Beta-Decay reaction (xsec: σ_{V-A})

$$\bar{\nu}_e + p \longrightarrow e^+ + n$$

Threshold 1.8 MeV. E_v extend to 10 MeV

Measure anti-v_e of interaction rate

Reactor core

Target free H

$$P(\overline{v}_{e} \rightarrow \overline{v}_{e}) = 1 - \sin^{2}(2\theta_{13}) \left[\sin\left(1.27 \frac{\Delta m_{atm}^{2} (eV^{2})L(m)}{E(MeV)}\right) + O(\frac{\Delta m_{sol}^{2}}{\Delta m_{atm}^{2}}) \right]$$

Straightforward oscillation formula : weak dependence on Δm_{sol}²

- MeV electron antineutrinos : only disappearance experiments
- sin²(2θ₁₃) measurement independent of δ-CP
- sin²(2θ₁₃) measurement independent of sign(Δm²₁₃)

'**clean**' information on θ₁₃

searches with reactors- v_{α} 's θ_{13} Kr2Det proposal (Mikaelyan et al. 2001): (not realized) mother of Double Chooz, Daya Bay, Reno, ... Krasnoyarsk reactor underground site: 600 mwe Det 1 Det 2 v_{e} reactor 150 m 1100 m $P(v_e \rightarrow v_e) = 1 - \sin^2(2\theta_{13}) \sin^2(\Delta m_{31}^2 L/4E)$ Т 0.8 ear detecto P ve≁v e 0.6 a 0.4 0.2 0 10^{2} 10^{3} 10^{4} 10¹ L [m] ($\langle E_v \rangle = 3 \text{ MeV}$)

http://bama.ua.edu/~busenitz/rnu2003_talks/lasserre1.doc http://bama.ua.edu/~busenitz/rnu2003_talks/suekane1.pdf

Outer Veto: plastic scintillator strips (400 mm)

 v-Target: 10,3 m³ scintillator doped with 1g/l of Gd compound in an acryclic vessel (8 mm)

 Y-Catcher: 22,3 m³ scintillator in an acrylic vessel (12 mm)

 Buffer: 110 m³ of mineral oil in a stainless steel vessel (3 mm) viewed by 390 PMTs

Inner Veto: 90m³ of scintillator in a steel vessel equipped with 78 PMTs

Veto Vessel (10mm) & Steel Shielding (150 mm)

CEA DSM Irfu

©Imag'In IRFU

Status of RENO

Site: Youngwang, Korea Tunnel + halls ready 6 cores, 16 GW

Two 20 tons detectors Near: 20 tons - 350 m – 200 mwe Far: 20 tons - 1.4 km - 700 mwe

Sensitivity 0.5% systematic error $sin^{2}(2\theta_{13}) < 0.02 (90\% C.L.), 3 y$

Status

Two detector filled Data taking by August 2011

Daya Bay Underground Laboratory

Far hall

January 2011

Status of Daya Bay

Site: Daya Bay Plant (11.6+6 GWth), China Near: 1 km tunnel + laboratory Far: 2 km tunnel + laboratory

8x20 tons detector modules (fiducial)

Near: 4x20 tons – 360-500 m – 200 mwe Far: 4x20 tons - 1.6-1.9 km – 1000 mwe

Expected Sensitivity

0.36% systematic error (relative) 5 years, $sin^2(2\theta_{13}) < 0.01$ (90% C.L.)

Status

2 near det. running by Summer 20114 far detectors deployment in 2012

Double Chooz

Detector integration and filling: 2008-2010

- Dec. 2010: filling of liquids completed.
- Jan. March 2011:

detector Commissioning

• Since Apr. 2011:

stable data taking for physics

Stable Data Taking since April 13th 2011

- >70 full days of physics before any data-quality flags (Physics run eff. 75%)
- Trigger rate ~120 Hz Trigger threshold < 0.6 MeV</p>
- Calibration runs 10% of the time (light injection by embedded fiber)
- Outer Veto Muon & Glove Box ready. Source Calibration Deployment soon

Muon & Michel Electron Data

Michel electron timing distribution

Muons

- Δt time between two events (ms)
- ~40Hz of muons tagged by Inner Veto
- ~10Hz by Inner Detector

- Michel Electrons
 - Time since stopped muon (µs) + Energy Selection Criteria
 - Stat. error only
 - Delayed coincidence works well

Neutron Data

Detector Performances & Sensitivity

Singles rates

- after vetoing muon-correlated events
- ~10 Hz in [0.7, 12] MeV \rightarrow ~DC proposal
- <0.01 Hz in [6, 12] MeV <0.01 Hz</p>
- \rightarrow < 1/2 better w.r.t DC proposal
- Promising sign for low accidental rates
- Neutron-capture as expected
 - on Gd (Target) & H (T+GC)
- \rightarrow data indicates that DC has 'clean' neutrino candidates
- Correlated backgrounds under study
- T2K's central values can be addressed at 99% CL with 2011 data
- Neutrino analysis on-going

Outline

- Updates from solar & reactor v-experiments on mixing
- θ_{13} search at nuclear reactors
- Reactor v-anomaly & sterile v's
- Kinematical v-mass measurement
- $0\nu\beta\beta$ decay experiments

Revised reactor neutrino spectra & VSBL reactor v-anomaly

T. Mueller et al. Phys. Rev. D83, 073006, 2011

- Triggered by evaluation for DC fardetector phase
- Improved conversion from β to $\overline{v_e}$ spectra:
 - Anchored to experimentall ILL BILLspectra of fission products
 - Conversion at individual β-branch level; residuals fitted as in original ILL conversion
 - Off-equilibrium effects included
- Improved (& increased) neutron life time measurement; also improved weak magnetism and radiative corrections

$$\sigma_f^{pred} = \int_0^\infty S_{tot}(E_\nu) \sigma_{\mathrm{V-A}}(E_\nu) dE_\nu = \sum_k f_k \sigma_{f,k}^{pred}$$

	old [3]	new	new/old
$\sigma^{pred}_{t,235_{U}}$	6.39±1.9%	$6.61 \pm 2.11\%$	+3.4%
$\sigma_{r,239Pm}^{pred}$	$4.19 \pm 2.4\%$	$4.34{\pm}2.45\%$	+3.6%
$\sigma_{f,238TT}^{pred}$	$9.21 \pm 10\%$	$10.10 \pm 8.15\%$	+9.6%
$\sigma_{f,241Pu}^{pred}$	$5.73 \pm 2.1\%$	$5.97{\pm}2.15\%$	+4.2%

Implications for SBL reactor experiments: reactor neutrino anomaly

G. Mention et al. arXiv:1101.2755v4

Implications for SBL reactor experiments: reactor neutrino anomaly

• **Best fit : 0.943±0.023 (**χ² = 19.6/19) Deviation from unity (2.5 σ) (Full treatment of correlations)

- Wrong preditions of v-spectra?
- Bias in all SBL reactor experiments?
- Hint for new physics at VSBL? Mixing with 4th sterile v: θ_{new} and Δm^2_{new}

(N.B.: also corroborated by Gallium source measurements)

T. Lasserre, this conference

Combine all reactor rate measurements, no spectral-shape information

1 dof $\Delta \chi^2$ profile 10 90.00 % 10r 90.00 % °×√ 5 95.00 % ${}^{\Delta}\!\chi^2$ 95.00 % 5 99.00 % 99.00 % 10² 10 2 dof ² contours 2 dof $\Delta \gamma^2$ contours allowed 10¹ 10 1 dof $\Delta \chi^2$ profile ∆m^{_}new (ev^{_}) Δm^2_{new} (eV²) of 10⁰ 2 10 profile excluded 10 area 10 10-4 10 10⁻² , 10⁻³ ້10⁻¹ [°]10[°] $5 \\ \Delta \chi^2$ 10 [ໍ]10[°] ′10⁻³ 10⁻¹ $\frac{5}{\Delta\chi^2}$ 10 10 $\sin^2(2\theta_{new})$ sin²(20_{new})

no-oscillations disfavored at 98.6% C.L.

no-oscillation disfavored at 99.8% CL

Gallium Anomaly 1 dof کړ² profile

Combining reactor rates + shape +

G. Mention et al. arXiv:1101.2755v4

N.B. reactor neutrino anomaly has no implications for θ_{13} searches in upcoming reacor oscillation experiments:

- For data taking with single-detector (far): use experimental cross section per fission measured in Bugey-4 and apply burn-up corrections, as done in the CHOOZ experiment (Eur.Phys.J. C27:331 374 (2003))
- Results are then independent of new physics at short base line or erroneous predictions of reactor neutrino fluxes
- Two-detector phase: relative measurement is independent of VSBL oscillations or reactor v-flux uncertainties

Outline

- Updates from solar & reactor v-experiments on mixing
- θ_{13} search at nuclear reactors
- Reactor v-anomaly & sterile v's
- Kinematical v-mass measurement
- $0\nu\beta\beta$ decay experiments

electrostatic spectrometers & detector

tritium-bearing components

KATRIN experiment – scientific objectives

KATRIN sensitivity

neutrino mass sensitivity: detailed investigations of of reference design, requirements: highest luminosity, high energy resolution, low background,

control/monitoring of fluctuations near on-line MC of experim. data

- statistical & systematic errors are expected to contribute equally
 - statistical error $\sigma_{stat} = 0.018 \text{ eV}^2$
 - systematic error $\sigma_{syst} < 0.017 \text{ eV}^2$

reference sensitivity (3 fb years)

sensitivity (90% CL) m(v) < 200 meV

discovery potential $m(\mathbf{v}) = 350 \text{ meV} (5\sigma)$

KATRIN sensitivity for sterile neutrinos

- Hannestad et al: initial estimates of KATRIN sensitivity for sterile v's assume very light active neutrinos m_a(v) ~ 0 eV, mixed with sterile m_s(v)
- 3 σ detection of 'kink' by m_{sterile} if active-sterile mixing |U_{es}|² ≥ 0.055 3+2 scenarios can also be disentangled

Status:

-commissioning of sub-components ongoing

- Start of physics 2013

WGTS Demonstrator

Outline

- Updates from solar & reactor v-experiments on mixing
- θ_{13} search at nuclear reactors
- Reactor v-anomaly & sterile v's
- Kinematical v-mass measurement
- $0\nu\beta\beta$ decay experiments

Double beta decay

2νββ: (A,Z) → (A,Z+2) + 2e⁻ + 2
$$\overline{v}_{e}$$
 ΔL=0
 $T_{1/2}^{2\nu} = (10^{18} - 10^{21})$ y

0 $\nu\beta\beta$: (A,Z) \rightarrow (A,Z+2) + 2e⁻ Δ L=2

Experimental signatures:

- peak at $Q_{\beta\beta} = E_{e1} + E_{e2} 2m_e$
- two electrons from vertex
- production of grand-daughter isotope

Discovery would imply:

- neutrino is its own anti-particle, (Majorana particle)
- absolute neutrino mass scale
- lepton number violation $\Delta L = 2$
- further new physics beyond the standard model

Neutrinoless double beta decay

Assume leading term is exchange of light Majorana neutrinos

Expected decay rate:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_{ee} \rangle^2$$

Phase space integral

Nuclear matrix element

$$Q = E_{e1} + E_{e2} - 2m_e$$

Q-value of decay

$$\langle m_{ee} \rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$$
 Effect

Effective neutrino mass

 $U_{\it ei}~$ (complex) neutrino mixing matrix

Predictions from oscillation experiments

Predictions from oscillation experiments

Next generation experiments

GERDA & EXO in commissioning phase, KamLAND-zen will start in August

Next generation experiments

GERDA construction: 2008-2010

Earthquake negligible impact on lab but on people....

6 April 2009

GERDA Inauguration @ LNGS: Nov 2010

Energy (keV)

Commissioning with **non-enriched Ge diodes**: bgd in $Q_{\beta\beta}$ -region

Commissioning: spectrum of **enriched** ⁷⁶**Ge** diodes and MC $2\nu\beta\beta$ & ⁴²K

Most events between ³⁹Ar endpoint & 1525 keV line accounted for by 2v2β decays.

R&D liquid argon instrumentation

Operation of Phase II detector prototype in LArGe:

Measured suppression factor at $Q_{\beta\beta}$: ~0.5·10⁴ for a near ²²⁸Th calibration source Also: successful read out of scintillation light with fibers coupled to SiPMs

Summary & Outlook

- Non-accelerator neutrino experiments (atmospheric, solar, reactor) are now doing precision measurements: test of sub-leading terms θ_{13} , θ_{14} , NSI,...
- Hint for θ₁₃>0 from non-accelerator experiments together with recent results from T2K & Minos are now at 3σ C.L.
- θ₁₃ search with Double Chooz started in April 2011, statistics in 2011 expected to be sufficient to verify central value of T2K; Reno, Daya Bay coming soon online.
- Does the reactor anomaly (together with other 2.5 σ anomalies) point to sterile neutrino(s)? Experimental tests required!
- 2011: GERDA & EXO-200 started, soon KL-Zen, Cuore-0 will start search for $0\nu\beta\beta$ decay
- **2012**: expect a plethora of interesting results on θ_{13} and $0_{\nu\beta\beta}$, and more!