Measurements of forward energy flow and forward jet production with CMS

H. Jung (CERN, DESY) on behalf of CMS

1

Why forward ?

Strategy for small x measurements

scale	central (activity)	forward (activity)	adrons)
small	small	small: energy flow	min bias (soft
larger	large: high p _t dijets	small: energy flow	<i>p</i>
large	large: W/Z	small: energy flow	
large		large: high p _t jets	p central jet
large	large: high p _t jet	large: high p _t jet	forward jet

= 3

Energy flow measurements

- measurement of $\frac{1}{N} \frac{dE}{d\eta}$
- minimum bias events at √s = 0.9 (7) TeV
- central dijet events |η|<2.5,
 E_τ > 8(20) GeV at √s = 0.9 (7) TeV

- trigger: charged particles in forward/backward region (3.9 < |η |<4.4)
- systematics: energy scale uncertainty \rightarrow 10 %
 - model uncertainty \rightarrow 3 8 % minimum bias, \rightarrow 4 18 % jets
 - total 11 14 % for minimum bias, 13 22 % for dijets

MinBias energy flow measurement

MinBias energy flow measurement

MinBias energy flow measurement

Dijet energy flow measurement

(by factor of 3 - 5)

Dijet energy flow measurement

Dijet energy flow measurement

W/Z & forward energy measurement

• measure W/Z with lepton in $|\eta| < 1.4$

- correlations with central track multiplicity (not shown)
- measure energy in Hadronic Forward Calorimeter (HF) in (3.0 < |η| <4.9)

W/Z Energy flow measurement

- energy distribution in fwd region sensitive to underlying event tunes
- large differences in small and large energy region

W/Z Energy flow measurement

CMS-PAS-FWD-10-008 Correlation between forward and backward energy distribution

energy distribution in forward/backward region strongly correlated

energy spectra and correlations are not well modeled

Jets in forward region

Inclusive forward jets

- E_t > 35 GeV (anti-kt, R=0.5)
- 3.2 < |η_f| < 4.7

• associated forward & central jets

- E_t > GeV (anti-kt, R=0.5)
- $|\eta_{\rm c}|$ < 2.8 and 3.2 < $|\eta_{\rm f}|$ < 4.7

Inclusive forward jet measurement

- jets measured in 3.4 < η < 4.7
- largest systematic uncertainty: Jet energy scale
- all theory predictions agree with data within experimental uncertainties

Inclusive forward jet measurement

 forward jet measurement can constrain high x and low x parton distributions CERN-CMS-note 2011-004

- non-perturbative corrections (NP)
 - hadronization & multiparton interactions
- scale: μ_f & μ_r varied by 2 independently

→ ~ 10 %

 PDF uncertainties largest at large p_t coming from large x partons
 ~ 10 ... 30 %

Forward and central jet measurement

Forward and central jet measurement

- predictions from collinear approach:
- differences between PYTHIA HERWIG
- differences also in POWHEG prediction using PYTHIA/HERWIG
- predictions from small x calculations
- HEJ(at parton level): within experimental uncertainties
- CASCADE: larger deviations to data

➔ room for improvement

Conclusions

- first measurements from low to high pt in forward region
 - energy flow in minimum bias, dijet and W/Z events
 - continuation from measurements at low √s in pp and HERA
 - inclusive forward jet and associated forward-central jet cross sections
 - test of small and high x PDFs as well as small x predictions
- inclusive measurements can be described (!) with

NLO, MC + PS + MPI and small x improved MCs

 correlations between central and forward region are challenge for theory !

LHC is small x QCD machine

