THE SEARCH FOR A CP-ODD LIGHT HIGGS IN Y(IS) DECAYS AT BELLE

Jamal Rorie University of Hawaii at Manoa EPS-HEP Summer 2011 Grenoble, France 22/07/2011

PHYSICS MOTIVATION

 Υ(IS) to ττ via annihilation interaction proposed in Dermíšek, Gunion, & McElrath in PhysRevD.76.051105

Figures From M.A. Sanchis-Lozano J.Phys.Soc.Jap. 76 (2007) 044101-044200

- For $M_{A^0} > 2M_{\tau}$ it is expected that τ pair decays will dominate.
- It follows that

 We should see a single photon peak with E_γ = M²_{Υ1S} M²_{A0}
 Looking for a set of events that have
 Monochromatic photon peak
 - -Evidence of τ pair decay in the final state

PREVIOUS EXPERIMENTAL RESULTS

CLEO (top) sought a CP-odd light Higgs using an Y(IS) sample.Their 90% C.L. upper limit for the branching fraction is shown.

BaBar (bottom) searched for decays of $\Upsilon(3S)$ to CP-odd light Higgs coupled to a τ pair; their 90% Confidence Level upper limit for the branching fraction is shown.

DATA SAMPLES

Integrated luminosity of B factories

• With 5x the number of $\Upsilon(IS)$ events, we hope to improve upon the limits set by CLEO and BaBar.

KEK & THE BELLE DETECTOR

- TOP: KEK campus in Tsukuba, Japan. Tsukuba hall, the location of the Belle detector, is highlighted.
- BOTTOM: The Belle detector

OVERVIEW OF THE BELLE DETECTOR

SAMPLE SELECTION

emu_ptotb_data

Entries 62593

Events on boundary

Result of selection

6 7 8 9 10 e+mu Invariant Mass [GeV]

-8

0^I

-14

□0

e+mu Invariant Mass [GeV]

emu_ptotb_data

Entries

		e+mu Mass and Momentum Distribution in Data
Selection	Criteria	S 6 S 5 E
Charge	2 charged tracks Charge sum is zero	
Lepton	 I)No e- e+ events allowed 2) Require one electron AND one muon in the final state. 	
Missing Mass	I.0GeV < M(miss,CM) < 7.0GeV	0 0 1 2 3 4 5 6 7 e+mu In e+mu Mass and Momentum Distribution in Data
Missing Angle	30 deg < theta(miss,CM) < 150deg	Performance for the set of se
Location	Candidate γ must be detected in barrel region	
Bremsstrahlung	Photons rejected if their tracks lie in a cone of 0.2 radians around an e^+ or μ^-	
Pi0 Cut	Photon can't combine with other photons to form Pi0 mass, 3σ	0 0 1 2 3 4 5 6 7 e+mu In
Kinematic Boundary	$s - M_{e+mu}^2 - 2E_{e+mu}F$	$P_{e+mu} < 10 GeV^2$

EFFICIENCY

- (left) Signal decay mode detailed
- (right) Reconstruction efficiency after all selection criteria applied

DATA SAMPLE

- Off-resonance integrated luminosity (∫Ldt)is 1.802fb⁻¹
 - $\sigma_{\tau\tau} = 0.919$ nb at $\Upsilon(4S)$ resonance, well understood

• cross section scaling =
$$\left(\frac{10.58 \ GeV}{9.43 \ GeV}\right)^2$$

- Total $\#\tau$ pair: 2.085M events, $N_{\tau\tau} \rightarrow \text{final state e}, \mu \sim 129\text{K}$
- On-resonance integrated luminosity (∫Ldt)is 5.712fb⁻¹
 - Continuum $\tau\tau$ contribution: # τ pair: 6.566M events, $N\tau\tau \rightarrow$ final state e, $\mu \sim 406K$
 - $\Upsilon(IS) \rightarrow \tau\tau$ contribution w/ 100M $\Upsilon(IS)$: # τ pair: 2.574M, $N_{\tau\tau} \rightarrow$ final state e, μ ~160K

MONTE CARLO MODELING

10

- Off-resonance τ sample was simulated in MC using KKMC
- On-resonance τ sample was recreated using EvtGen for the peak production and KKMC for the continuum.
- Photon spectrum studied after τ sample was modeled
- ISR & FSR photons modeled in continuum sample.
- Only FSR modeled in peak sample.

FITTING: SIGNAL

- A fit to $\sigma_{Gaussian}$ in terms of E γ returned $\sigma_{Gaussian} \sim 0.02 \times E\gamma$
- $\bullet \, \sigma_{\text{Gaussian}}$ is what was expected for peak width dominated by ECL resolution
- Reconstruction efficiency with Gaussian very similar to Crystal Ball
- Gaussian gives better convergence during background+signal fitting

Signal fit function found: Gaussian with width prescribed as a function of peak energy

FITTING: BACKGROUND

On-resonance MC, All Cuts

Background Fit: 2 exponentials and a polynomial.

- Exponentials fit well in low E $\!\gamma$ region
- Polynomials fit well in high E $\!\gamma$ region
- Fit with combination of both
- (top) Fit populated region with polynomial +exponentials
- (bottom) Make a user-defined function with PDF=0 after the populated region ends;.

FITTING: BACKGROUND

13

- Fit in high A⁰ mass (low Eγ) has unbiased residuals as expected (a)
- Similar result for the fit near transition region of 4 GeV (b)
- Fit including transition region also good (c)

Friday, July 22, 2011

FITTING: SIGNAL+BACKGROUND FIT

- Signal+Background fit:
 - Fit window edges $\pm 50 \times \sigma_{Gaussian}$ about the Gaussian mean
 - Mean is allowed to float $\pm 10 \times \sigma_{Gaussian}$ about initial value
 - Floating signal normalization based on number of of events
 - Step size is consistent with detector resolution

SCAN

-U.L. from likelihood integration -CLEO has better sensitivity over most of the range -Belle may have better sensitivity to A⁰ with masses >8.5 GeV -Expect to unblind soon

SUMMARY & WHAT'S NEXT

- Summary:
 - Using the world's largest $\Upsilon(1S)$ data in a search for evidence of an A^0 decay.
 - Succeeded in isolating an extremely pure sample of τ pairs.
 - We expect our search will be able to corroborate previous best limits utilizing a decay mode that hasn't been fully explored.
- What's Next
 - Improve detection sensitivity by allowing events with one e or one μ and the other charged track left unidentified.