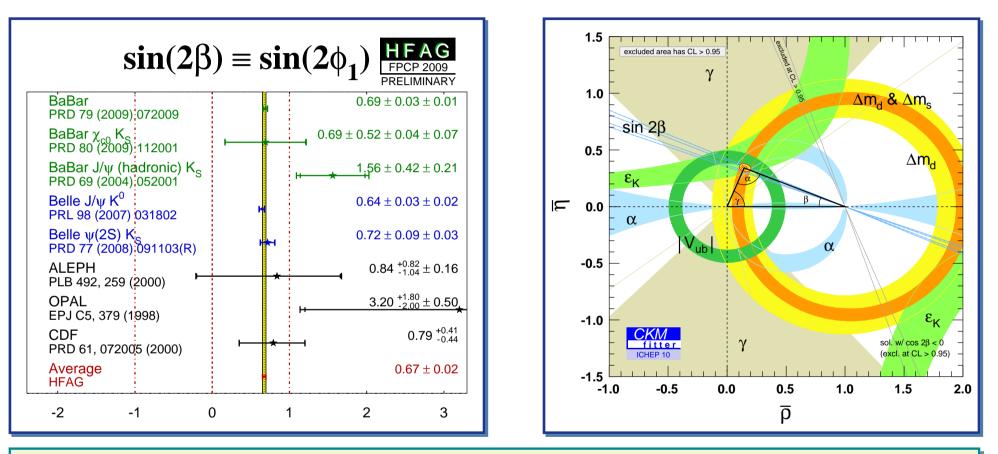
The SuperB physics programme

Alberto Lusiani INFN and Scuola Normale Superiore Pisa

(on behalf of the SuperB collaboration)


International Europhysics Conference on High-Energy Physics

Grenoble, France, July 21-27 2011

B-factories overconstrained Standard Model & searched for New Physics

CKM matrix phase main source of CP violation (2008 Nobel prize to M.Kobayashi & T.Maskawa)
 no evidence (but perhaps few glimpses) of Physics beyond the Standard Model

The SuperB project

- $\Upsilon(4S)$ -peak asymmetric energy e^+e^- Super Flavor Factory
- flexible design will also allow running at the charm threshold
- 80% polarized electron beam further defines the already clean initial e^+e^- state
- accelerator: 100× B-factories luminosity with same power by squeezing beams (ILC)
- detector: moderately improved BABAR detector (e.g. vertex detector closer to the beam)
- $L = 10^{36} \text{ cm}^{-2} \text{s}^{-1}$ around the $\Upsilon(4S)$, 10 times less at the charm threshold
 - > $\Upsilon(4S)$: coherent *B* mesons & time-dep. measurements, charm hadrons, tau leptons
 - charm threshold: coherent D mesons & time-dep. measurements, tau leptons
- Physics program
 - topics: bottom and charm physics, tau LFV, precision EW, light new physics
 - emphasis: new physics sensitivity competitive and complementary with LHC experiments
 - don't forget: e^+e^- clean data for precision measurements in almost every energy-accessible topic
- data-taking: beginning of 2017
 - ▶ plan: 75 ab⁻¹ around $\Upsilon(4S)$ (+ continuum), 0.5 ab⁻¹ at charm threshold, 1 ab⁻¹ at $\Upsilon(5S)$

Physics case for SuperB

New Physics (NP) expected beyond Standard Model, perhaps at $\Lambda \sim 1 \text{ TeV}$

SuperB can search for NP, in a complementary & competivive way with LHC, MEG and other expts

case 1 LHC finds New Physics (therefore determining A)

SuperB can study NP flavour structure, but can also be sensitive to larger scales than LHC

case 2 the NP scale is beyond the LHC reach

- SuperB can look for indirect NP signals up to $\Lambda \sim 10$ TeV and more
- LHCb and MEG have similar abilities but
 - some B final states are only measurable by SuperB (with neutrals or missing momentum)
 - SuperB can test tau LFV, CPV, EDM, g-2, can search for light new physics
 - SuperB can do useful measurements on entangled charm mesons decays
- productive competition with Belle2, but SuperB has also unique features
 - SuperB can run at the charm threshold and will have a polarized electron beam
 - plus it is designed to take 75 ab^{-1} rather than 50 ab^{-1} of data

SuperB physics studies started in ~2005

2005 Hewett et al., The Discovery Potential of a Super B factory, hep-ph/0503261

2007 Conceptual Design Report, arXiv:0709.0451 [hep-ex]

2008 Valencia retreat proceedings, arXiv:0810.1312 [hep-ex]

2010 SuperB white paper: Physics, arXiv:1008.1541 [hep-ex]

SuperB golden modes

(indirect searches for NP need 1) good exp. precision & 2) good theory understanding)

- **B**_{u,d} Physics
 - $\blacklozenge B^+ \to \tau^+ \nu, \quad B^+ \to \mu^+ \nu, \quad B^+ \to K^{(*)+} \nu \overline{\nu}, \quad b \to s \gamma, \quad b \to s \ell \ell$
 - precision sin 2 β measurements, in particular $B \rightarrow \eta' K_S^0, \rightarrow K_S^0 \pi^0 \gamma$

τ Physics

• Lepton flavour violation in tau decays: especially $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow 3\ell$

Charm Physics

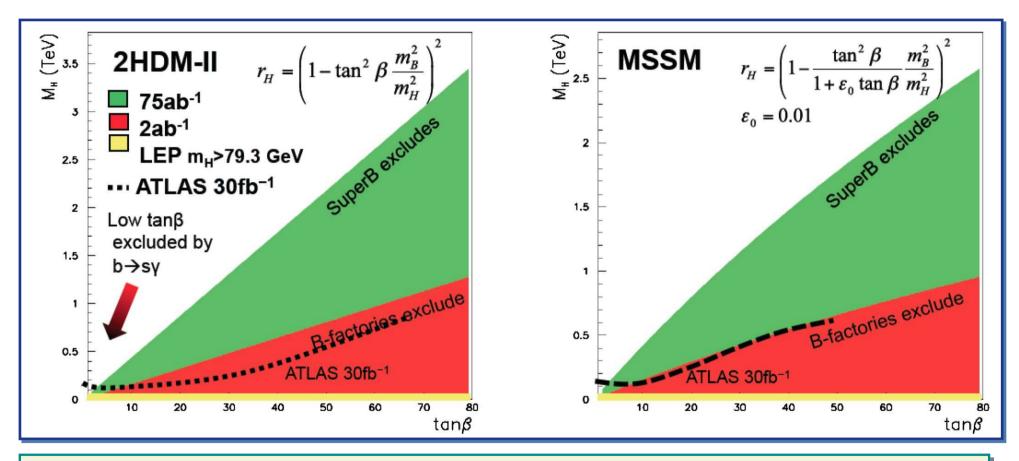
mixing parameters and CP violation.

B_s Physics

- Semi-leptonic *CP* asymmetry A_{SI}^{s} .
- $B_{\rm S} \to \gamma \gamma.$

Other Physics

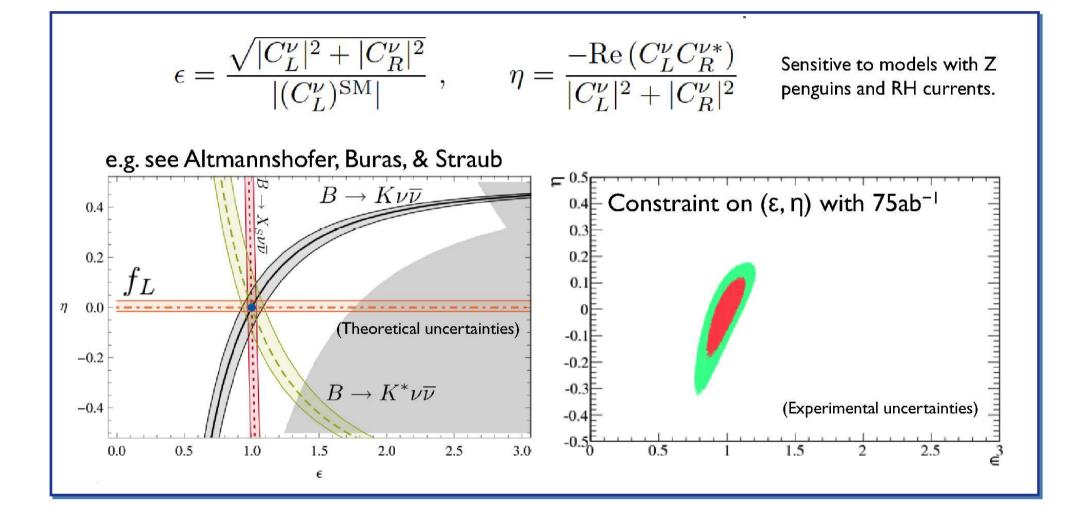
- Precision measurement of $\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \text{ GeV}/c^2$.
- Direct searches for non-standard light Higgs bosons, Dark Matter and Dark Forces



$$\mathcal{B}(B \to \tau \nu)$$

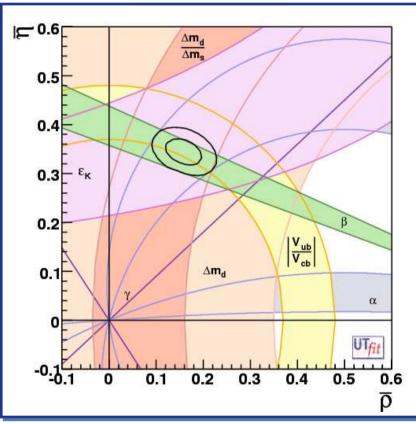
- helicity suppressed, reasonably clean SM prediction
 - (within the SM, BR proportional to $|V_{ub}|^2$ and f_B^2 . Now tension with other $|V_{ub}|$ determinations)
- negative interference from charged Higgs amplitude (favoring tau over muon)
- non trivial selection and bkg suppression because of neutrinos in final state
- SuperB offers ideal conditions
 - clean events, hermetic detector, well defined initial state, just 2 Bs
 - tag other side with reconstructed B
 - study "extra-energy" distribution with data for bkg subtraction
- 3% measurement is possible

$\mathcal{B}(B \rightarrow \tau \nu)$ effective constraint on charged Higgs NP

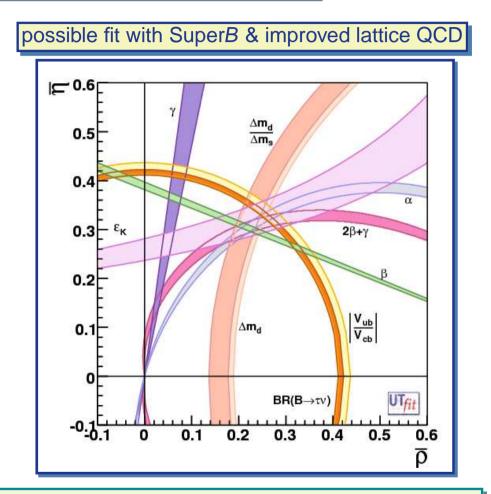


• $r_H = \mathcal{B}(B \to \tau \nu) / \mathcal{B}_{SM}(B \to \tau \nu)$ limits assuming the SM value is measured

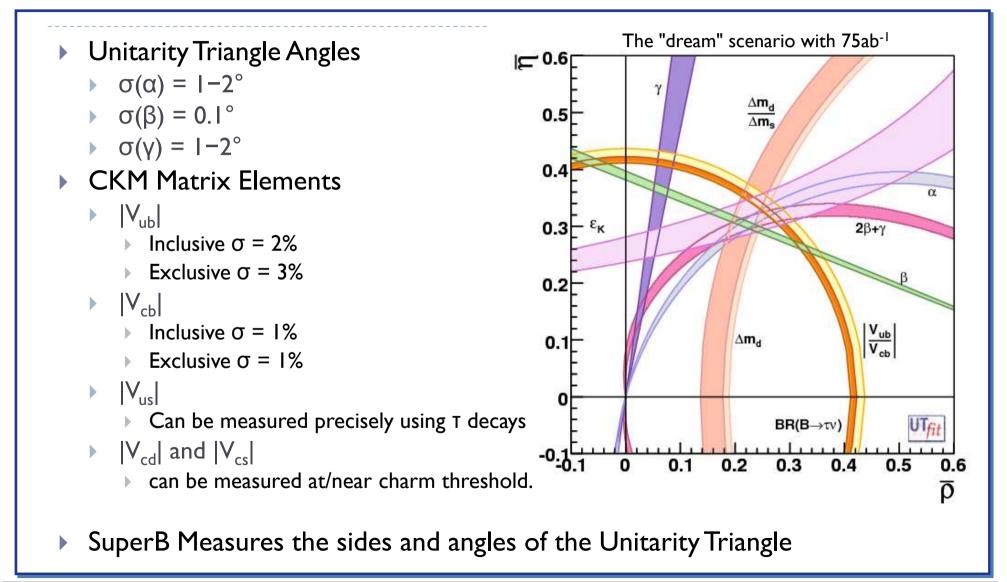
ATLAS exclusion limit for 30 fb⁻¹ at 14 TeV computed using arXiv:0901.0512



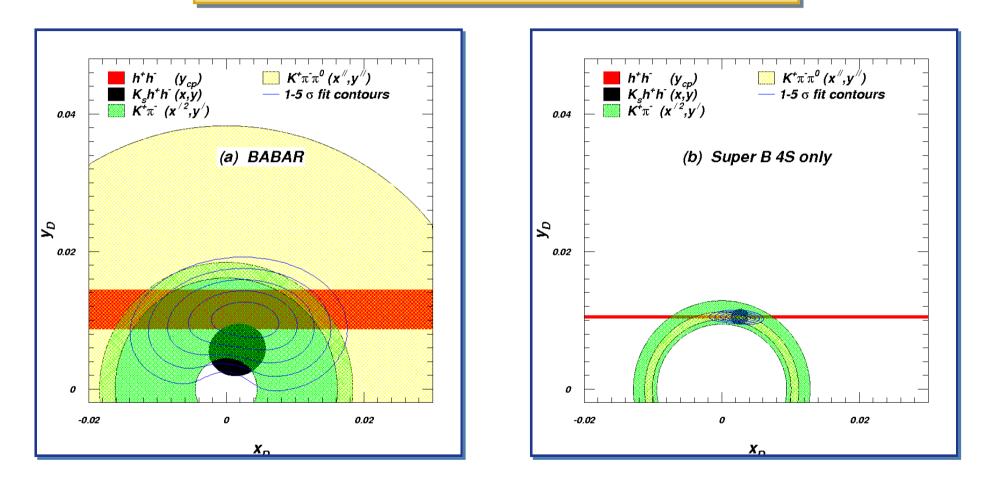
$$\mathcal{B}(B^+ \to K^{*+} \nu \overline{\nu}) \text{ and } \mathcal{B}(B^+ \to K^+ \nu \overline{\nu})$$



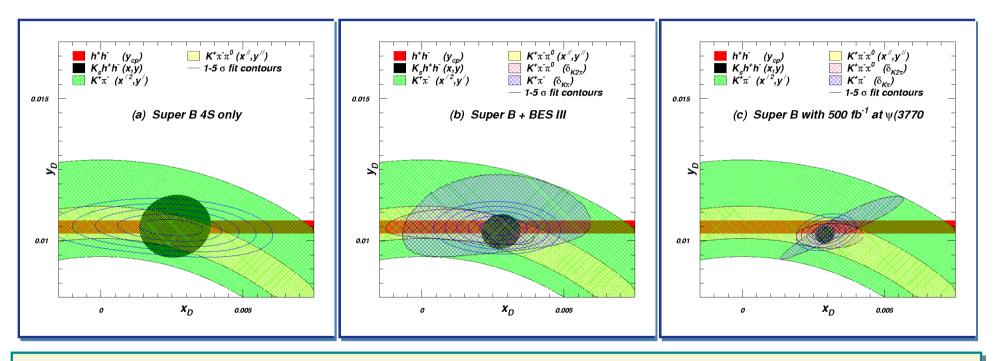
From ~10% to ~1% experimental precision on CKM



bands show 95% constraints, 2006 values assumed for the SuperB fit



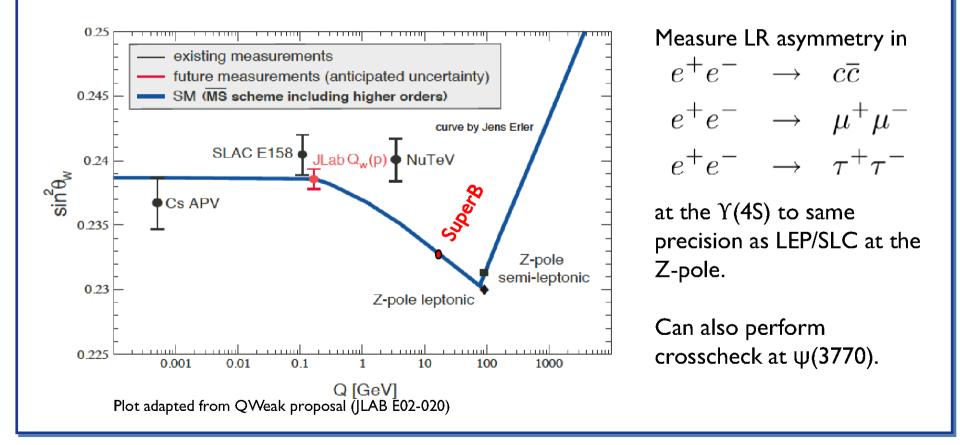
From ~10% to ~1% experimental precision on CKM



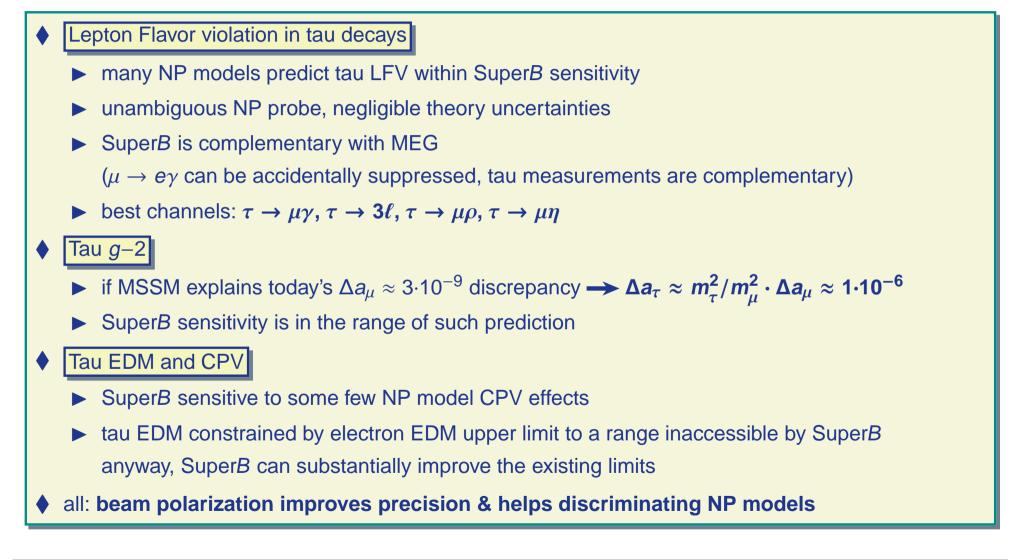
SuperB D^0 -mixing reach, using only $\Upsilon(4S)$ data

INF

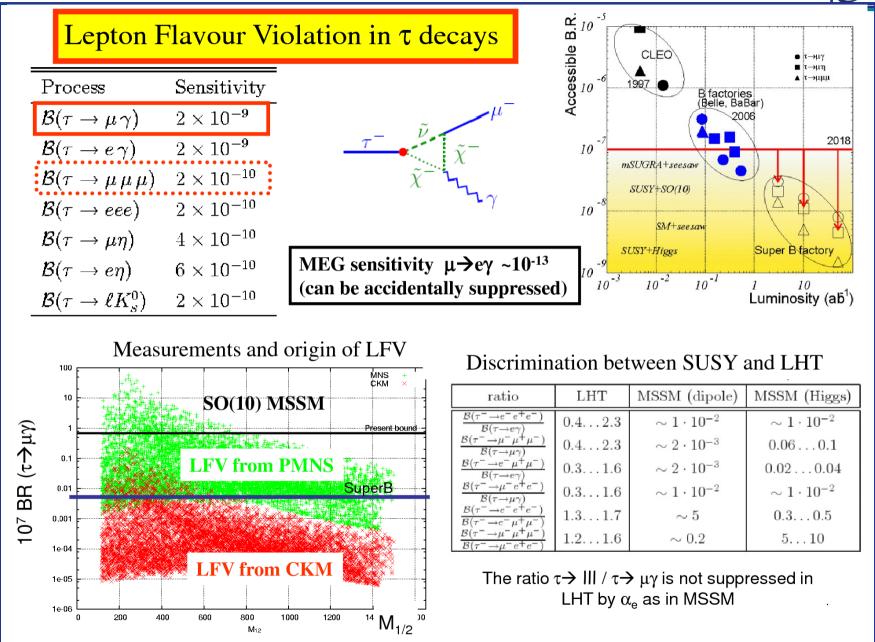
SuperB D⁰-mixing reach, using also charm threshold data



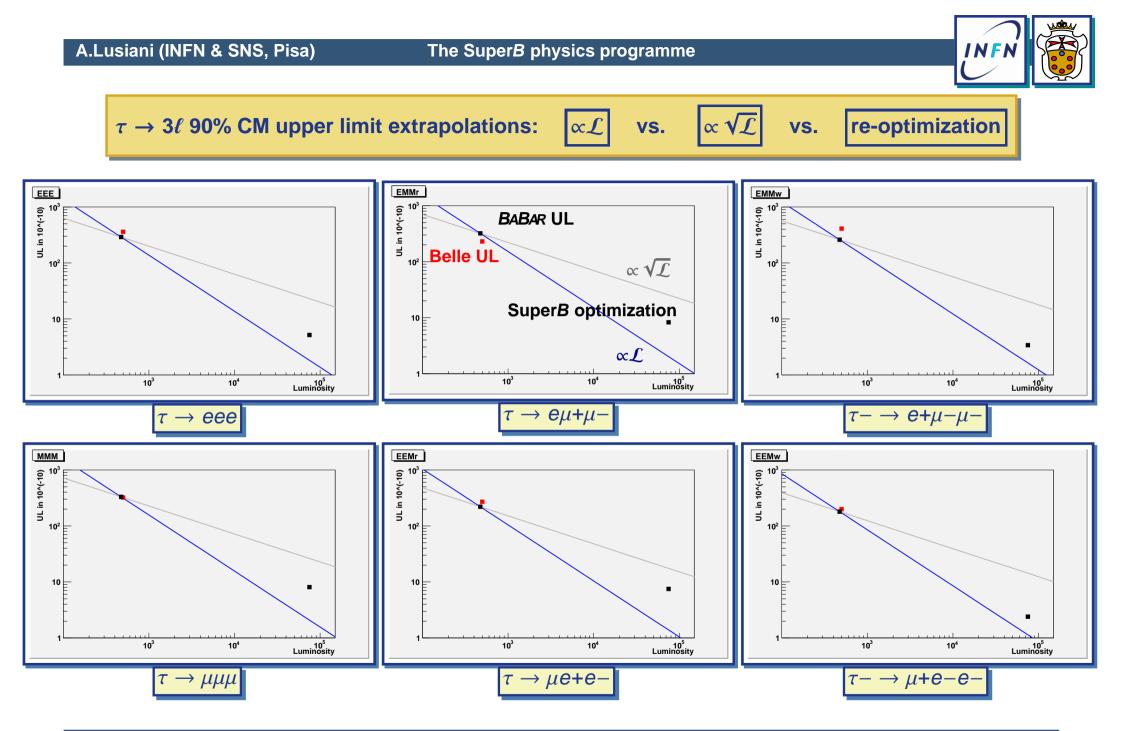
• entangled *D* mesons produced at threshold used to measure Dalitz strong phases


Precision electroweak measurements

sin²θ_W can be measured with polarised e⁻ beam
 √S=Y(4S) is theoretically clean, c.f. b-fragmentation at Z pole

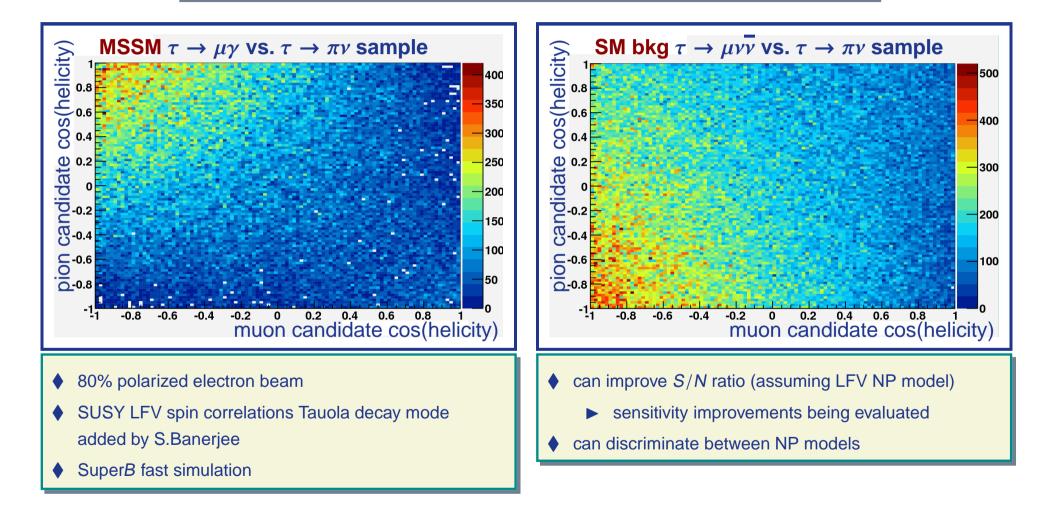


SuperB Tau Physics NP probes


SuperB sensitivity to Tau LFV

• repeating BABAR analysis insures an improvement of $\sqrt{\mathcal{L}_{\text{SuperB}}/\mathcal{L}_{\text{BABAR}}} \approx \sqrt{150} \approx 12$

• if n. of expected background events ~1 events, improvement of $\mathcal{L}_{\text{SuperB}}/\mathcal{L}_{\text{BABAR}} \approx 150$


• some of previous slide estimates have been refined and updated in the white paper

Process	Expected 90% CL upper limit	3σ evidence reach
$\mathcal{B}(au o \mu \gamma)$	2.4·10 ⁻⁹	5.4·10 ⁻⁹
$\mathcal{B}(\tau \to e \gamma)$	3.0·10 ⁻⁹	6.8·10 ^{−9}
$\mathcal{B}(au o \ell \ell \ell)$	$2.3 - 8.2 \cdot 10^{-10}$	1.2-4.0·10 ⁻⁹

SuperB beam polarization effects on $\tau \rightarrow \mu \gamma$ LFV search

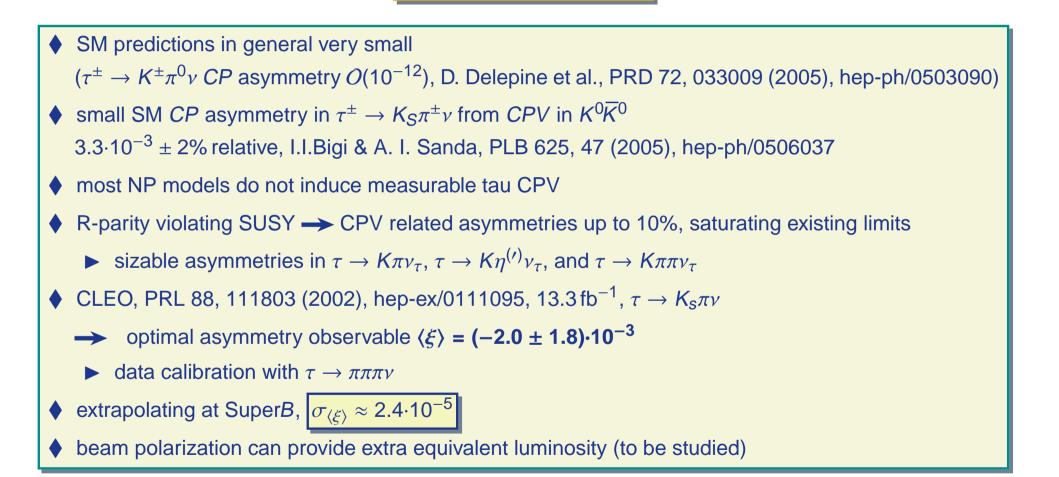
Tau g-2 at SuperB with beam polarization

• MSSM would shift muon g-2 by about the presently observed discrepancy $\Delta a_{\mu} \approx 3 \cdot 10^{-9}$

Δa_{μ} and Δa_{τ} for various SPS points							
SPS	1a	1 b	2	3	4	5	
$\Delta a_{\mu} imes 10^{-9}$						1.1	
$\Delta a_{ au} imes 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3	
(specific parameters can produce Δa_{τ} as high as 1.10 ⁻⁵)							

- ♦ J.Bernabeu et al., JHEP098P1108 estimate SuperB $\sigma(a_{\tau}) = [0.75 1.7] \cdot 10^{-6}$
 - ► SuperB actually measures $a_{\tau}(q^2)$ from final state distributions of $e^+e^- \rightarrow \tau^+\tau^-$
 - however, Δa_{τ} from high energy NP contributions is constant for small q^2
 - real part from τ polar angle distribution or transv.&long. polarization

from tau EDM studies (see next slides) with more realistic assumptions \rightarrow SuperB $\sigma(a_{\tau}) \sim 2.4 \cdot 10^{-6}$



Tau EDM at SuperB

- ♦ $|d_e| < 1.6 \cdot 10^{-27} e \text{ cm}$ at 90% CL, 10.1103/PhysRevLett.88.071805 / PDG10
- most NP models expect $|d_{\tau}| \propto (m_{\tau}/m_e)|d_e|$
- SuperB 2010 Physic Report reviews NP models expectations and concludes that: $|d_e|$ upper limit $\rightarrow |d_{\tau}^{NP}| < 10^{-22} e \text{ cm}$
- SuperB actually measures $d_{\tau}(q^2)$ form factor from final state distributions of $e^+e^- \rightarrow \tau^+\tau^-$
 - ▶ however, high energy NP contributions are constant for small q^2
- beam polarization permits measurements based on single tau distributions
- ♦ J.Bernabeu et al., arXiv:0707.1658v1 [hep-ph], estimate SuperB $\sigma(d_{\tau}) \approx 7.2 \cdot 10^{-20} e \text{ cm}$
 - 100% electron beam polarization, no uncertainty
 - only $\tau \rightarrow \pi \nu$, $\tau \rightarrow \rho \nu$, no reconstruction uncertainty
- with more realistic assumptions, SuperB $\sigma(d_{\tau}) \approx 10 \cdot 10^{-20} e \text{ cm}$ (note that information can be obtained also from the other decay channels)
- ♦ extrapolate Belle EDM search, Phys. Lett. B551, 16 (2003), hep-ex/0210066 → SuperB $\sigma(d_{\tau}) \approx 17-34\cdot10^{-20}e$ cm (both real and imaginary parts)

Tau CPV at SuperB

Sensitivity of SuperB golden modes to specific NP models

Observable/mode	H ⁺	MFV NP	non-MFV	NP in	RH	LHT				SUSY		
	high tan β	low tan β	2-3 sector	Z peng.	currents		AC	RVV2	AKM	δLL	FBMSSM	GUT-CMM
$\begin{array}{l} \tau \to \mu \gamma \\ \tau \to \ell \ell \ell \end{array}$						***	***	***	*	***	***	*** ?
$\begin{split} B &\to \tau \nu, \mu \nu \\ B &\to K^{(*)+} \nu \overline{\nu} \\ S \text{ in } B &\to K_S^0 \pi^0 \gamma \\ S \text{ in other penguins} \\ A_{CP}(B \to X_S \gamma) \\ BR(B \to X_S \gamma) \\ BR(B \to X_S \ell \ell) \\ B &\to K^{(*)} \ell \ell \text{ (FBA)} \end{split}$	★ ★ ★(CKM)	*	* ** * * *(CKM) * * * ** **	* * *	* * * * * * *		* *** *	* ** *	* * *	* *** ***	* *** ***	? ? ** ? ?
a ^s			* * *			***						***
Charm mixing CPV in Charm	**						***	*	*	* ***	*	

This is the end

Observable/mode	Current now	LHC <i>b</i> (2017) 5 fb ⁻¹	Super <i>B</i> (2021) 75 ab ⁻¹	Belle2 (2021) 50 ab ⁻¹	LHC <i>b</i> upgrade (10 years of running) 50 fb ⁻¹	theory now				
au Decays										
$\tau \to \mu \gamma ~(\times 10^{-9})$	< 44		< 2.4	< 5.0						
$ au ightarrow e\gamma$ (×10 ⁻⁹)	< 33		< 3.0	< 3.7 (est.)						
$\tau \rightarrow \ell \ell \ell \ (\times 10^{-10})$	< 150 - 270	< 244	< 2.3 - 8.2	< 10	< 24					
		1	B _{u,d} Decays							
$BR(B \rightarrow \tau \nu) (\times 10^{-4})$	1.64 ± 0.34		0.05	0.04		1.1 ± 0.2				
$BR(B \rightarrow \mu \nu) (\times 10^{-6})$	< 1.0		0.02	0.03		0.47 ± 0.08				
$BR(B\to K^{*+}\nu\overline{\nu})\;(\times 10^{-6})$	< 80		1.1	2.0		6.8 ± 1.1				
$BR(B\to K^+\nu\overline{\nu})\;(\times 10^{-6})$	< 160		0.7	1.6		3.6 ± 0.5				
$BR(B \rightarrow X_S \gamma) \ (\times 10^{-4})$	3.55 ± 0.26		0.11	0.13	0.23	3.15 ± 0.23				
$A_{CP}(B \to X_{(s+d)}\gamma)$	0.060 ± 0.060		0.02	0.02		~ 10 ⁻⁹				
$B \rightarrow K^* \mu^+ \mu^-$ (events)	250	5000	10-15k	7-10k	65,000	-				
$BR(B \to K^* \mu^+ \mu^-) \ (\times 10^{-6})$	1.15 ± 0.16		0.06	0.07		1.19 ± 0.39				
$B \rightarrow K^* e^+ e^-$ (events)	165	400	10-15k	7-10k	5,000	-				
$BR(B \to K^* e^+ e^-) \ (\times 10^{-6})$	1.09 ± 0.17		0.05	0.07		1.19 ± 0.39				
$A_{FB}(B \to K^* \ell^+ \ell^-)$	0.27 ± 0.14		0.040	0.03		-0.089 ± 0.020				
$B \to X_{\rm S} \ell^+ \ell^- \text{ (events)}$	280		8,600	7,000		-				
$BR(B \to X_{S}\ell^+\ell^-) \ (\times 10^{-6})$	3.66 ± 0.77		0.08	0.10		1.59 ± 0.11				
$S \text{ in } B \to K_S^0 \pi^0 \gamma$	-0.15 ± 0.20		0.03	0.03		-0.1 to 0.1				
$S \text{ in } B \rightarrow \eta' K^0$	0.59 ± 0.07	0.45	0.01	0.02	0.00	±0.015				
$S \text{ in } B \to \phi K^0$	0.56 ± 0.17	0.15	0.02	0.03	0.03	±0.02				
		1	B ⁰ _s Decays							
$BR(B^0_s \to \gamma \gamma) \; (\times 10^{-6})$	< 8.7		0.3	0.2 – 0.3		0.4 - 1.0				
A_{SL}^{s} (×10 ⁻³)	-7.87 ± 1.96		4.			0.02 ± 0.01				
D Decays										
X	(0.63 ± 0.20%	0.06%	0.02%	0.04%	0.02%	$\sim 10^{-2}$				
у	(0.75 ± 0.12)%	0.03%	0.01%	0.03%	0.01%	~ 10^{-2} (see above).				
УСР	(1.11 ± 0.22)%	0.05%	0.03%	0.05%	0.01%	$\sim 10^{-2}$ (see above).				
q/p	(0.91 ± 0.17)%	10%	2.7%	3.0%	3%	~ 10^{-3} (see above).				
$arg\{q/p\}(^{\circ})$	-10.2 ± 9.2	5.6	1.4	1.4	2.0	$\sim 10^{-3}$ (see above).				
Other processes Decays										
$\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \text{GeV}/c^2$			0.0002			clean				