Kaon physics at CERN: recent results

Evgueni Goudzovski

(University of Birmingham, eg@hep.ph.bham.ac.uk)

on behalf of CERN NA48 and NA62 collaborations

<u>Outline:</u>

- 1) The NA48/NA62 experiments at CERN;
- 2) Lepton flavour universality test with $K^{\pm} \rightarrow e^{\pm}v/K^{\pm} \rightarrow \mu^{\pm}v$ decays;
- 3) Search for the lepton number violating $K^+ \rightarrow \pi^- \mu^+ \mu^+$ decay;
- 4) Form factors of semileptonic decays;
- 5) Conclusions.

European Physical Society HEP 2011 conference Grenoble, France • *22 July 2011*

CERN NA48/NA62 experiments

NA48/2 K[±] beam line ~10¹² protons Simultaneous K+/K-Unseparated beam: $\pi/K \sim 10$ (400 GeV) per spill beams (2003-04); ~10(~1) million K⁺/SPS spill mostly K⁺ beam (2007) Momentum selection DCH 4 60(74) GeV/c magnet Final FDFD collimator DCH1 Defining Protecting collimators collimator Cleaning collimator K+ vacuum Decay volume BM beam pipe vacuum Be target 0.36 Ζ mrad **Kevlar windov** K-Second achromat Cleaning DFDF Beam: \sim 4x4mm, \sim 10x10 μ rad (rms). **Front-end** Beam spectrometer Quadrupole 22%(18%) of kaons decay in was installed achromat quadruplet the 114m long vacuum tank. in 2003-04 Focusing He tank vacuum • u sweeping 10 cm tank + spectrometer 1cm not to scale 100 200 250 m

The detector

$$R_{K} = K_{e2}/K_{\mu 2}$$
 in the SM

Lepton Flavour Universality (LFU): not a fundamental law (violated in v sector). New physics models (2HDM, SUSY, SM4): significant LFU violation.

Observable sensitive to LFU violation:

due to the suppression of the SM value.

$R_{K} = K_{e2}/K_{\mu 2}$ beyond the SM

Measurement strategy

(1) K_{e2}/K_{µ2} candidates are collected <u>concurrently</u>:
→ no kaon flux measurement; several systematic effects cancel at first order (e.g. reconstruction/trigger efficiencies, time-dependent effects).

(2) Counting experiment, independently in <u>10 lepton momentum bins</u> (owing to strong momentum dependence of backgrounds and event topology)

(3) Data-driven beam halo background subtraction:

- \rightarrow Alternating K⁺/K⁻ beams (K⁺: 66%, K⁻: 7%, simultaneous: 27%);
- \rightarrow K⁺ only sample used to measure background in K⁻ sample & vice versa.

K_{e2} vs K_{u2} selection

K_{µ2} background in K_{e2} sample

Main background source

Muon `catastrophic' energy loss in LKr by emission of energetic bremsstrahlung photons. $P_{\mu e} \sim 3 \times 10^{-6}$ (and momentum-dependent).

 $P_{\mu e}$ / R_{K} ~ 10%:

 $K_{\mu 2}$ decays represent a major background

Direct measurement of P_{µe}

Pb wall (9.2X₀) in front of LKr: suppression of $\sim 10^{-4}$ positron contamination due to $\mu \rightarrow e$ decay.

 $K_{\mu 2}$ candidates, track traversing Pb, p>30GeV/c, E/p>0.95: positron contamination <10⁻⁸.

 $P_{\mu e}$ is modified by the Pb wall:

 \rightarrow ionization losses in Pb (low p);

 \rightarrow bremsstrahlung in Pb (high p).

The correction $f_{Pb} = P_{\mu e}/P_{\mu e}^{Pb}$ is evaluated with a dedicated Geant4-based simulation

4 data samples with different background conditions: K⁺(Pb), K⁺(noPb), K⁻(Pb), K⁻(noPb).

Muon mis-identification

145,958 K[±] \rightarrow e[±] ν candidates. Background: B/(S+B)=(10.95±0.27)%. Electron ID efficiency: (99.28±0.05)%.

cf. KLOE: 13.8K candidates, ~90% electron ID efficiency, 16% background

E. Goudzovski / EPS HEP 2011, Grenoble / 22 July 2011

12

42.817M candidates (pre-scaled trigger). B/(S+B) = (0.50±0.01)%, background dominated by beam halo.

NA62 partial (40%) data set result: R_K=(2.487±0.013)×10⁻⁵ [PLB698 (2011) 105] 14 E. Goudzovski / EPS HEP 2011, Grenoble / 22 July 2011

R_K world average

$$BR\approx 10^{-8}\times (\langle m_{\mu\mu}\rangle/TeV)^2$$

[K. Zuber, PLB 479 (2000) 33; L. Littenberg, R. Shrock, PLB491 (2000) 285]

Analogously, neutrinoless double beta decay rate is $\sim \langle m_{ee} \rangle^2$.

 $\langle m_{||} \rangle = |\Sigma m_i U^2_{|i}|$ is the effective Majorana neutrino mass

E. Goudzovski / EPS HEP 2011, Grenoble / 22 July 2011

Best upper limits on LFV/LNV decays $K_{\pi ee}$, $K_{\pi \mu \mu}$, $K_{\pi \mu e}$ come from BNL E865.

The E865 $K_{\pi\mu\mu}$ limit, based on a (short) special run, is the weakest: BR<3×10⁻⁹.

→ NA48/2 is competitive for $K_{\pi\mu\mu}$ mode: ~8 times larger data sample (K[±] collected in 2003–04).

Year

$K_{\mu3}$ form factor fits

Form-factor parameterizations:

- New NA62 measurement of $R_{K}=BR(K_{e2})/BR(K_{\mu2})$ presented. Combined experimental precision has improved by an order of magnitude over the last 3 years, but is still an order of magnitude worse than the SM prediction.
- R_K experiment and SM currently agree at 1.2σ level.
- NA48/2 upper limit on LNV BR(K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+})$ is an improvement by a factor of 3: BR<1.1×10⁻⁹ $\rightarrow \langle m_{\mu\mu} \rangle <$ 300 GeV at 90% CL.
- NA48/2 precisely measured the $K^{\pm}_{\mu3}$ form factors: \rightarrow further improvement in the determination of $|V_{us}|$.

Future plans of kaon physics at CERN: talk by Paolo Valente, "Detector R&D and Data Handling" session