Measurements of $C P$ violation in the B_{s} system at DO S. Burdin (university of

on behalf of $D \varnothing$ collaboration

Europhysics Conference on High-Energy Physics
20-27 juillet 2011, Alpes Congrès - Alpexpo Grenoble, France

Outline

- Introduction
- CP violation in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$
- Branching ratio $B_{s} \rightarrow J / \psi f_{0}$

CP Violation @ DO

I. CP violation in decay:
a) Study of Direct CP Violation in $B^{ \pm} \rightarrow J / \psi K^{ \pm}\left(\pi^{ \pm}\right)$Decays

Phys. Rev. Lett. 100, 211802 (2008), $2.8 \mathrm{fb}^{-1}$
$A_{C P}\left(B^{ \pm} \rightarrow J / \psi K^{ \pm}\right)=\frac{\Gamma\left(B^{-} \rightarrow f^{-}\right)-\Gamma\left(B^{+} \rightarrow f^{+}\right)}{\Gamma\left(B^{-} \rightarrow f^{-}\right)+\Gamma\left(B^{+} \rightarrow f^{+}\right)}=+0.0075 \pm 0.0061$ (stat.) ± 0.0027 (sys t.)

$$
A_{C P}\left(B^{ \pm} \rightarrow J / \psi \pi^{ \pm}\right)=-0.09 \pm 0.08 \text { (stat.) } \pm 0.03 \text { (syst.) }
$$

II. $\quad C P$ violation in mixing: $\quad a_{s 1}=\frac{\frac{d \Gamma}{d t}(\overline{\mathrm{~B}}(\mathrm{t}) \rightarrow \mathrm{f})-\frac{d \Gamma}{d t}(\mathrm{~B}(t) \rightarrow \overline{\mathrm{f}})}{\frac{d \Gamma}{d t}(\overline{\mathrm{~B}}(\mathrm{t}) \rightarrow \mathrm{f})+\frac{d \Gamma}{d t}(\mathrm{~B}(\dagger) \rightarrow \overline{\mathrm{f}})}$
a) Search for CP Violation in $B_{s}{ }^{0} \rightarrow \mu^{+} D_{s}-{ }^{-} \times$Decays in pp Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ Phys. Rev. D 82, 012003 (2010), $5.0 \mathrm{fb}^{-1}$
a) Evidence for an Anomalous Like-Sign Dimuon Charge Asymmetry Phys. Rev. D 82, 032001, (2010), $6.1 \mathrm{fb}^{-1}$
(update will be presented today by G. Borissov)

CP Violation @ DO

III. CP violation in interference between a

 decay with mixing and a decay without mixing:a) Evidence for the Decay $\left.B_{s}{ }^{0} \rightarrow D_{s}{ }_{s}{ }^{*}\right) D_{s}{ }^{\left({ }^{*}\right)}$ and a Measurement of $\Delta \Gamma_{s}{ }_{s}{ }^{C P} / \Gamma_{s}$ Phys. Rev. Lett. 102, 091801 (2009), $2.8 \mathrm{fb}^{-1}$
b) Measurement of the B_{s}^{0} Mixing Parameters from the Flavor-Tagged Decay $B_{s}{ }^{0} \rightarrow J / \psi \varphi$
Phys. Rev. Lett. 101, 241801 (2008), $2.8 \mathrm{fb}^{-1}$ (update in this presentation)
b) Measurement of the relative branching fraction of $\mathrm{BOs}-->\mathrm{J} / \mathrm{psi}$ fO(980), fO(980)-->pi+pi- to $\mathrm{BOs}-->\mathrm{J} /$ psi phi, phi-->K+K-, $8 \mathrm{fb}-1$ (in this
presentation)

$$
A_{f_{C P}}=\frac{\frac{d \Gamma}{d t}\left(\overline{\mathrm{~B}}(\mathrm{t}) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)-\frac{d \Gamma}{d t}\left(\mathrm{~B}(\dagger) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)}{\frac{d \Gamma}{d t}\left(\overline{\mathrm{~B}}(\dagger) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)+\frac{d \Gamma}{d t}\left(\mathrm{~B}(\dagger) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)}
$$

$C P$ Violation in $B_{s} \rightarrow J / \psi+\phi, f_{0}$

New Physics

Final CP-states

S-wave $\mathrm{K}^{+} \mathrm{K}^{-}$could contribute $\sim 10 \%$ under the ϕ-peak in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi+\phi$ (S.Stone and L.Zhang, Phys. Rev. D 79, 074024 (2009)). It has to be taken into account with unknown phase and fraction.

$$
\sqrt{1-F_{s}} g(\mu) \mathbf{A}(\mathbf{t})+e^{-i \delta_{s}} \sqrt{F_{s}} h(\mu) \mathbf{B}(\mathbf{t})
$$

Extraction of $\phi_{s}, \Delta \Gamma_{s}, \Delta m_{s}, \ldots$

- Different CP-states correspond to different mass states in the limit of no direct $C P$-violation
- CP-odd $\rightarrow \mathrm{B}_{s}{ }^{\mathrm{H}}$

$$
\rightarrow \Delta m_{s}
$$

- CP-even $\rightarrow B_{s}{ }^{L} \int \rightarrow \Delta m_{s}$
- They also have different lifetimes $\rightarrow \Delta \Gamma_{s}$
- Formulae adopted from F.Azfar et al., JHEP 1011:158,2010
$\mathcal{A}_{i}(t)=F(t)\left[E_{+}(t) \pm e^{2 i \beta_{s}} E_{-}(t)\right] a_{i}, \quad P_{B}(\theta, \varphi, \psi, t)=\frac{9}{16 \pi}|\mathbf{A}(t) \times \hat{n}|^{2}$.
$\overline{\mathcal{A}}_{i}(t)=F(t)\left[\pm E_{+}(t)+e^{-2 i \beta_{s}} E_{-}(t)\right] a_{i}, \quad P_{\bar{B}}(\theta, \varphi, \psi, t)=\frac{9}{16 \pi}|\overline{\mathbf{A}}(\mathbf{t}) \times \hat{n}|^{2}$
$F(t)=\frac{e^{-\Gamma_{s} t / 2}}{\sqrt{T_{H}+\tau_{L}}}, \quad \hat{n}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$

$$
\mathbf{A}(t)=\left(\mathcal{A}_{0}(t) \cos \psi,-\frac{\mathcal{A}_{\|}(t) \sin \psi}{\sqrt{2}}, \frac{\mathcal{A}_{\perp}(t) \sin \psi}{\sqrt{2}}\right)
$$

$E_{ \pm}(t) \equiv \frac{1}{2}\left[e^{\left(\frac{-\Delta \mathrm{r}_{s}}{4}+i \frac{\Delta M_{s}}{2}\right) t} \pm e^{-\left(\frac{\left(\Delta \mathrm{C}_{s}\right.}{4}+i \frac{\Delta M_{s}}{2}\right) t}\right] \overline{\mathbf{A}}(t)=\left(\overline{\mathcal{A}}_{0}(t) \cos \psi,-\frac{\overline{\mathcal{A}}_{\|}(t) \sin \psi,}{\sqrt{2}}, i \frac{\overline{\mathcal{A}}_{\perp}(t) \sin \psi}{\sqrt{2}}\right)$

Extraction of $\phi_{s}, \Delta \Gamma_{s}, \Delta m_{s}, \ldots$

- Some combinations are sensitive to these parameters

$$
\frac{P_{ \pm}(t)-\bar{P}_{ \pm}(t)}{P_{ \pm}(t)+\bar{P}_{ \pm}(t)}= \pm\left[\frac{2 \sin \left(\Delta m_{s} t\right) \sin \phi_{s}}{\left(1 \pm \cos \phi_{s}\right) e^{+\Delta \Gamma_{s} t / 2}+\left(1 \mp \cos \phi_{s}\right) e^{-\Delta \Gamma_{s} t / 2}}\right],
$$

where $P_{+}(t) \equiv\left|A_{0}(t)\right|^{2}+\left|A_{\| l}(t)\right|^{2}, P_{-}(t) \equiv\left|A_{\perp}(t)\right|^{2}$.

- R. Fleischer, hep-ph/0703112

Data Samples

$B_{s} \rightarrow J / \psi+\phi$ analysis

- Admixture of $C P$-even ($L=0,2 ; A_{0}, A_{\| \mid}$) and $C P$-odd ($L=1 ; A_{\perp}$) states
- Angular analysis is used to separate the CP components and measure the lifetimes of each component and phase ϕ_{s}

Angles θ (transversity), φ and $\psi . \psi$ is the angle between ${\overrightarrow{p^{\prime}}}_{K}+$ and the x-axis in the rest frame of ϕ.

$B_{s} \rightarrow J / \psi+\phi$ analysis

- Definitions of nine real measurables

Parameter	Definition		
$\left\|A_{0}\right\|^{2}$	\mathcal{P}-wave longitudinal amplitude squared, at $t=0$		
$A 1$	$\left\|A_{\\|}\right\|^{2} /\left(1-\left\|A_{0}\right\|^{2}\right)$		
$\bar{\tau}_{s}(\mathrm{ps})$	$B_{s}^{0^{\prime}}$ mean lifetime		
$\Delta \Gamma_{s}\left(\mathrm{ps}^{-1}\right)$	Heavy-light decay width difference		
F_{S}	$K^{+} K^{-} \mathcal{S}$-wave fraction		
β_{s}	$C P$-violating phase $\left(\equiv-\phi_{s}^{J / \psi \phi} / 2\right)$		
$\delta_{\\|}$	$\arg \left(A_{\\|} / A_{0}\right)$		
δ_{\perp}	$\arg \left(A_{\perp} / A_{0}\right)$		
δ_{s}	$\arg \left(A_{s} / A_{0}\right)$		

Event selection

- Two reconstructed muons of opposite charge \rightarrow J/ ψ candidates
- ϕ candidates from opposite charged tracks assuming the tracks are kaons
- B_{s} candidates from J / ψ and ϕ candidates
- Cuts on kinematic and mass variables
- $P_{+}\left(K^{ \pm}\right)>0.4 \mathrm{GeV}$
- $2.84<M\left(\mu^{+} \mu\right)<3.35 \mathrm{GeV}$
$-1.01<M\left(K^{+} \mathrm{K}^{-}\right) \times 1.03 \mathrm{GeV}$
$-5.0<M\left(\mu^{+} \mu^{-} K^{+} K^{-}\right)<5.8 \mathrm{GeV}$

Background Suppression

- The BDT is used to suppress background
- Prompt ($p \bar{p} \rightarrow J / \Psi X$)
- b-inclusive $b \bar{b} \rightarrow J / \Psi X$

- Simple-cut selections (a la published in 2008) were used for cross-check and systematic uncertainties

Probability Density Function

$\epsilon(\vec{\omega}) \times\left(\mathcal{B}_{s}(\lambda ; t, \vec{\omega}) \frac{1-D}{2}+\overline{\mathcal{B}}_{s}(\lambda ; t, \vec{\omega}) \frac{1+D}{2}\right)$

- where
- $\vec{\omega}=(\psi, \theta, \varphi)$ - angles
- D-initial state tagging dilution,
- $\epsilon(\vec{\omega})$ - acceptance,
- $R(\dagger)$ - resolution
- $\lambda=\left(\tau_{s}, \Delta \Gamma_{s}, \phi_{s}^{J / \psi \phi},\left|A_{0}\right|^{2},\left|A_{\perp}\right|^{2}, F_{s}, \delta_{s}, \delta_{\|}, \delta_{\perp}, \Delta m_{s}\right)$

Detector Acceptance and Resolution

- Data selection criteria were applied to flat MC distributions weighted with data
- difference in P_{+}distributions from trigger

- The distribution of the time resolution
- MC-squares
- Data-crosses

Maximum Likelihood Fit

Fit Results

BDT sample

$$
\begin{aligned}
\bar{\tau}_{s} & =1.426_{-0.032}^{+0.035} \mathrm{ps}, \\
\hline \Delta \Gamma_{s} & =0.129_{-0.053}^{+0.076} \mathrm{ps} \\
\phi_{s}^{J / \psi \phi} & =-0.49_{-0.40}^{+0.48} \\
\left|A_{0}\right|^{2} & =0.552_{-0.017}^{+0.016} \\
\left|A_{\|}\right|^{2} & =0.219_{-0.021}^{+0.020}, \\
\delta_{\|} & =3.15 \pm 0.27, \\
\cos \left(\delta_{\perp}-\delta_{s}\right) & =-0.06 \pm 0.24, \\
F_{S}(\mathrm{eff}) & =0.146 \pm 0.035 .
\end{aligned}
$$

Simple-cut sample

$$
\begin{aligned}
\bar{\tau}_{s} & =1.444_{-0.033}^{+0.041} \mathrm{ps} \\
\Delta \Gamma_{s} & =0.179_{-0.060}^{+0.059} \mathrm{ps} \\
\phi_{s}^{J / \psi \phi} & =-0.56_{-0.32}^{+0.36} \\
\left|A_{0}\right|^{2} & =0.565 \pm 0.017 \\
\left|A_{\|}\right|^{2} & =0.249_{-0.022}^{+0.021} \\
\delta_{\|} & =3.15 \pm 0.19 \\
\cos \left(\delta_{\perp}-\delta_{s}\right) & =-0.20_{-0.27}^{+0.26} \\
F_{S} & =0.173 \pm 0.036
\end{aligned}
$$

$$
\Delta \Gamma_{s}=0.129_{-0.053}^{+0.076} \mathrm{ps}^{-1}, \quad \Delta \Gamma_{s}=0.179_{-0.060}^{+0.059} \mathrm{ps}^{-1},
$$

Systematic Uncertainties

- Different widths of ϕ
- Variations of resolution parameters
- Variation of initial-state tagging parameters
- Acceptance
- Difference between the BDT and Simple-cut samples
- Markov Chain Monte Carlo technique was used for systematics and combination

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi+\phi$ Preliminary Result \dagger

$$
\begin{aligned}
\bar{\tau}_{s} & =1.443_{-0.035}^{+0.038} \mathrm{ps}, \\
\Delta \Gamma_{s} & =0.163_{-0.064}^{+0.065} \mathrm{ps}^{-1} \\
\phi_{s}^{J / \psi \phi} & =-0.55_{-0.36}^{+0.38}, \\
\left|A_{0}\right|^{2} & =0.558_{-0.019}^{+0.017}, \\
\left|A_{\|}\right|^{2} & =0.231_{-0.030}^{+0.024}, \\
F_{S} & =0.173 \pm 0.036, \\
\delta_{\|} & =3.15 \pm 0.22,
\end{aligned}
$$

Sensitivity to Δm_{s}

- The mixing-induced $C P$-violation should manifest itself as a $B_{s}^{0}-\bar{B}_{s}^{0}$ oscillation with the amplitude proportional to $\sin \left(\phi_{s}\right)$
$\Delta N=N\left(B_{s}^{0}\right)-N\left(\bar{B}_{s}^{0}\right)=N_{s} \cdot C \cdot \sin \left(\phi_{s}\right)$

$B_{s}^{0} \rightarrow J / \psi f_{0}(980)$

- CP-odd final state \rightarrow complicated angular analysis is not needed
- Independent measurement of β_{s}
- Measurement of lifetime gives independent information on $\Delta \Gamma_{s}$
- The first step is to measure the branching ratio
- with respect to $B_{s} \rightarrow J / \psi+\phi$

$B_{s}^{0} \rightarrow J / \psi f_{0}(980)$

- Muon trigger
- Identical critera for $J / \psi f_{0}(980)$ and $J / \psi+\phi$
- BDT to suppress backgrounds
- $498 \pm 76 \mathrm{~J} / \psi \mathrm{f}_{0}(980)$ events
- Branching ratio

$$
R=\frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi f_{0}(980) ; f_{0}(980) \rightarrow \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi \phi ; \phi \rightarrow K^{+} K^{-}\right)}=0.210 \pm 0.032 \text { (stat) } \pm 0.036 \text { (syst). }
$$

Summary

- $\mathrm{B}_{s}{ }^{0}$ mixing parameters, amplitudes and phases of the polarization amplitudes were measured in the $B_{s} \rightarrow J / \psi+\phi$ analysis using $8 \mathrm{fb}^{-1}$ data sample.
- KK S-wave contamination increased the uncertainties.
- Measured branching ratio of $\mathrm{B}_{s} \rightarrow \mathrm{~J} / \psi \mathrm{f}_{0}(980)$ agrees with other experiments.
- Next step is the CP-violation measurements.
- Combination with other DO measurements of CPviolation parameters will be performed soon.
- Stay tuned!

Backup Slides

DZero Detector

- Spectrometer : Fiber and Silicon Trackers in 2 T Solenoid
- Muons : 3 layer system \& absorber in Toroidal field
- Hermetic : Excellent coverage of Tracking, Calorimeter and Muon Systems

Independent Determination of F_{s}

(a) $1.018<M\left(K^{+} K^{-}\right)<1.020 \mathrm{GeV}$

(b) $1.048<M\left(K^{+} K^{-}\right)<1.050 \mathrm{GeV}$

FIG. 16: The invariant mass distribution of B_{s}^{0} candidates with $c t>0.02 \mathrm{~cm}$ in two slices of $M\left(K^{+} K^{-}\right)$. Fits to a sum of a Gaussian function and a polynomial are used to extract the B_{s}^{0} yield in each slice.

Opposite Side Tagging

BDT variables (prompt)

Rank	Variable	Importance Separation	
1	$K K$ invariant mass	0.3655	0.3540
2	Maximum ΔR between either K meson and the B_{s}^{0} candidate	0.1346	0.4863
3	Isolation using the maximum ΔR between either K and the B_{s}^{0}	0.0390	0.1784
4	Uncorrected p_{T} of the B_{s}^{0}	0.0346	0.3626
5	Minimum ΔR between either K and the B_{s}^{0}	0.0335	0.4278
6	p_{T} of the trailing K meson	0.0331	0.4854
7	p_{T} of the ϕ meson	0.0314	0.4998
8	p_{T} of the leading K meson	0.0283	0.4884
9	Trailing muon momentum	0.0252	0.0809
10	p_{T} of the leading muon	0.0240	0.1601
11	Maximum ΔR between either muon and the B_{s}^{0}	0.0223	0.1109
12	Maximum χ^{2} of of either K meson with the J / ψ vertex	0.0217	0.0162
13	Dimuon invariant mass	0.0215	0.0145
14	Maximum χ^{2} of either of the K candidate track	0.0213	0.021
15	B_{s}^{0} isolation using the larger $K / B_{s} \Delta R$ and tracks from the PV	0.0207	0.1739
16	p_{T} of the J / ψ meson	0.0205	0.1809
17	Minimum ΔR between either muon and the B_{s}^{0} candidate	0.0188	0.1023
18	Trailing K momentum	0.0105	0.3159
19	χ^{2} of the B_{s}^{0} candidate vertex	0.0093	0.0119
20	B_{s}^{0} isolation using $\Delta R<0.75$	0.0241	
21	Minimum χ^{2} of the J / ψ vertex with either K	0.0081	0.0069
22	$p T$ of the trailing muon	0.0079	0.0922
23	Minimum of the χ^{2} of the J / ψ and ϕ vertices	0.0073	0.0057
24	Isolation using $\Delta R<0.5$	0.0070	0.0405
25	Uncorrected B_{s}^{0} total momentum	0.0068	0.2103
26	Minimum χ^{2} of either K track fit	0.0065	0.0266
27	Isolation using $\Delta R<0.5$ and particles from the PV	0.0057	0.0401
28	Leading K meson momentum	0.0051	0.3217
29	Leading muon momentum	0.0048	0.0908
30	ϕ meson momentum	0.0048	0.3233
31	Maximum χ^{2} of the J / ψ or ϕ vertices	0.0044	0.0061
32	Isolation using $\Delta R<0.75$ and particles from the PV	0.0037	0.0259
33	J / ψ meson momentum	0.0037	0.1004

TABLE V: Variables used to train the prompt BDT, ranked by their importance in the training.

BDT variables (non-prompt)

Rank	Variable	Importance Separation	
1	$K K$ invariant mass	0.2863	0.3603
2	B_{s}^{0} isolation using the larger $K / B_{s} \Delta R$ and tracks from the PV	0.1742	0.4511
3	Minimum $d E / d x$ of either K	0.0778	0.1076
4	χ^{2} of B_{s}^{0}	0.0757	0.2123
5	p_{T} of the ϕ meson	0.0559	0.4856
6	p_{T} of the leading K meson	0.0504	0.4745
7	Isolation using the maximum ΔR between either K and the B_{s}^{0}	0.0429	0.4468
8	p_{T} of the trailing K meson	0.0350	0.4774
9	Maximum χ^{2} of either K meson with the J / ψ vertex	0.0260	0.2051
10	Isolation using $\Delta R<0.5$ and particles from the PV	0.0229	0.1703
11	Isolation using $\Delta R<0.75$ and tracks from the PV	0.0154	0.2238
12	Minimum χ^{2} of of either K with the J / ψ vertex	0.0151	0.1308
13	Minimum ΔR between either K meson and the B_{s}^{0} candidate	0.0115	0.3104
14	Dimuon invariant mass	0.0099	0.0190
15	Total momentum of the ϕ meson	0.0091	0.3307
16	p_{T} of the J / ψ meson	0.0089	0.1198
17	Trailing muon momentum	0.0082	0.0594
18	Isolation using $\Delta R<0.5$	0.0073	0.1695
19	Maximum ΔR between either K meson and the B_{s}^{0} candidate	0.070	0.3794
20	Maximum $d E / d x$ of either K meson	0.0069	0.0528
21	Trailing K meson momentum	0.0068	0.3253
22	J / ψ vertex χ^{2}	0.0063	0.0057
23	Leading K meson momentum	0.0058	0.3277
24	Maximum χ^{2} of either K candidate track	0.0054	0.0267
25	Isolation using $\Delta R<0.75$	0.0046	0.2203
26	Minimum ΔR between either muon and the B_{s}^{0} candidate	0.0041	0.0729
27	Minimum χ^{2} of either K candidate track	0.0039	0.0284
28	uncorrected p_{T} of B_{s}^{0} candidate	0.0036	0.2485
29	p_{T} of the trailing muon	0.0029	0.0702
30	J / ψ momentum	0.0027	0.0645
31	Maximum ΔR between either muon and the B_{s}^{0} candidate	0.0026	0.0872
32	Vertex χ^{2} of the ϕ meson	0.0017	0.0098
33	Uncorrected B_{s}^{0} momentum	0.0014	0.1675
34	p_{T} of the leading muon	0.0011	0.1008
35	Leading muon momentum	0.0009	0.0547

TABLE VI: Variables used to train the non-prompt BDT, ranked by their importance in the training.

BDT Output

BDT Variables (prompt)

BDT Variables (inclusive b)

21 July 2011

$C P$ violation @ DO / S.Burdin

Markov Chain Monte Carlo

- Since ϕ_{s} is correlated with $\Delta \Gamma_{s}$ we want to know how the likelihood depends on these variables.
- Start from the minimum obtained from the fit.
- Generate a multivariate gaussian $e^{-\frac{1}{2}(x-\mu) \cdot(x-\mu)}$ point x
- Where Σ is the covariance matrix.
- Calculate $\alpha=L(x) / L(\mu)$
- Generate random number $r=U(0 ; 1)$
- If $r<a$ accept the new point $\mu=x$
- Continue until reach the amount of points desired.
- We generate $1 M$ events for each Markov Chain

$C P$ Violation in $B_{s} \rightarrow J / \psi+\phi, f_{0}$

- Standard Model Lagrangian

$$
L=\frac{g}{\sqrt{2}}(\bar{u}, \bar{c}, \bar{t})\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\binom{d}{V_{\mu}} W^{u}\left(W^{\mu}+\right.\text { h.c. }
$$

Unitarity $\rightarrow V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0$ for B_{s} system

