Performance studies of large-area triple-GEM prototypes for future upgrades of the CMS forward muon system

> Salvatore A. Tupputi Politecnico di Bari & INFN for the "GEM for CMS" group

> > Ι

Performance studies of large-area triple-GEM prototypes for future upgrades of the CMS forward muon system

> Salvatore A. Tupputi Politecnico di Bari & INFN for the "GEM for CMS" group

- CMS Muon system upgrade scenario
- GEMs construction first steps

- Simulation studies
 - Trigger performance
 - Physics reach

Friday, July 22, 2011

Compact Muon Barrel Solenoid

- Gaseous detectors for the muon system
 - Tracking detectors o(100 µm) spatial resolution
 - Drift Tubes (DT) in barrel
 - Cathode Strips Chambers (CSC) in endcaps
 - Trigger detector o(ns) time resolution
 - Resistive Plate Chambers (RPC) in both region

CMS forward muon system

- Cathode Strip Chambers (CSC) fully cover 1.2< $|\eta|$ <2.4; good spatial resolution in $\eta \& \phi$: segments for trigger and reconstruction
- Resistive Plate Chambers (RPC) cover $|\eta| < 1.6$; strips length along η , have o(cm) spatial resolution in ϕ
 - good time resolution: hits used in trigger for correct BX ID and resolving ambiguities

- Original project foresaw a redundant muon system with RPC to cover $|\eta| < 2.1$
 - current RPC system to $|\eta| < 1.6$ (budget cuts, high-rate might have been too much)
 - redundancy's missing in the most critical zone: high-rate and high-density radiation and lower magnetic field
- *RPC system upgrade (up to |\eta| < 2.1) required to keep up with LHC future environments*

Physics for high-eta regions

- Upgrade foreseen by ~2020: ~3000 fb⁻¹ will be already collected by then
- Standard Model precision measurement:
 - high-η Z production for backward-forward asymmetry studies (important for PDF)
 - precise measurements of electroweak processes where barrel is not enough (low-p_T J/ψ, Y)
- Exotica (aka whatever new physics at 7-8 TeV mass scale):
 - *Heavy-resonances* (*with possible multi-leptons signatures*)
 - New Heavy Stable Charged Particle which may need precision timing
 - May produce very high-p_T muons (hundreds of GeV/c up to... who knows?)

5

• Muons wide acceptance and robust triggering become even more crucial for a "Compact Muon Solenoid"

Multi Pattern Gaseous Detectors (MPGD) for upgrade

- Rate capability $\geq 10^5 Hz/mm^2 \Rightarrow 10 MHz/cm^2$
- Spatial resolution ~100 μm ($\theta_{track} < 45^{\circ}$)
- Good double track resolution
- *Time resolution ~ 4-5 ns*
- High efficiency (typically over 98%)
- Non-flammable gases (Ar, CO2)
- Can be readout along η as well
 - improvement in rate capability from using η measurement in trigger

RPC Region	Rates Hz/cm ² LHC (10 ³⁴ cm ² /s)	High Luminosity LHC 2.3 x LHC	(10 ³⁵ cm ² /s) Phase II SLHC ??
RB	30	Few 100	kHz (tbc)
RE 1, 2, 3,4 η < 1.6	30	Few 100	kHz (tbc)
Expected Charge in 10 years	0.05 C/cm ²	0.15 C/cm ²	~ C/cm²
RE 1,2,3,4 η > 1.6	kHz	Few kHz	Few 10s kHz
Total Expected Charge in 10 years	~ C/cm ²	few C/cm²	Few 10s C/cm ²

- Timing comparable to RPCs; improvements in
 - spatial resolution
 - radiation-hardness
- Cost sustainable for going to large areas chambers (o(1) m²)
- Already used in some HEP experiments (COMPASS, LHCb, TOTEM)
- Activities within RD51 framework

Including MPGD into RPC trigger

- RPC PAttern Comparator (PAC) compares muon hits (same BX) with preloaded patterns
 - at least 3 stations fired
 - within projective η towers
 - *p_T* assignment w.r.t. patterns

- as p_T precision depends on spatial granularity along φ, improved spatial resolution
 - sharpens turn-on curve
 - contributes to rate lowering

Trigger simulation set-up

- Disclaimer: only spatial resolution has been considered relevant for preliminary performance studies on trigger and tracking
 - simulation relies on "RPC-like" chambers with different spatial resolutions
- Single muon samples with 3 different resolutions referred wrt RPC strips number as are reported in CMS Technical Design Report (TDR):
 - x1 x2 x8
- Ideal (I) and realistic (R) conditions for RPC chambers:
 - Efficiency: 100%(I) or 95%(R)

• Cluster size for RPC: 1(I) or 2(R) (GEM stations always cs=1)

- Trigger turn-on curves for PAC p_T > 50 GeV/c
- Steeper step slope as resolution increases
- Larger tails in realistic case

Trigger rates

- Rates of trigger candidates built up with 2 GEM (2-GEM cands') no more flat at • high p_T thresholds (red and green) due to better momentum assignment and no clusters:
 - \sim 3-4x rate drop for 2xTDR resolution •
 - ~8-9x rate drop for 8xTDR resolution •
- Realistic cluster size raises up the 1-GEM trigger candidates rate (black) •

- *High-p_T trigger rate* benefits from MPGDs
- Just slight decrease for lower pT, as bending is more enhanced
 - 1-GEM candidates suppression may be a choice

1-1828384

0 - (1 & 2) & (3 | 4)

Qual. - matched planes

Studies on tracking performance

• Single muon samples

- $p_T = 200, 500, 1000, 2000, 5000 \text{ GeV/c}$
- $|\eta| > 1.6$; uniform in ϕ
- *RPC system with high eta chambers with point resolution given by*
 - TDR, TDRx2, TDRx4, ..., TDRx64, TDRx128 strips

Boundary conditions

- - At lower momenta contribution for acceptance and muon ID
- A 1 TeV muon interacting with detector material can't be resolved better than o(100) µm

II

Point resolution

INFN Section Research Sectione di Bart

Momentum resolution

- Momentum improves as strip pitch fades from spatial resolution
- Momentum value systematic bias reduced
- Improvement noticeable even with standard CMS muon reconstruction

- CAVEAT: results obtained with standard CMS muon reconstruction
 - Employs RPC hits just for resolving segment extrapolation ambiguities
- Real impact deserves to be evaluated by accounting for improved resolution in reconstruction algorithm

Experience & GEM prototypes growing

Friday, July 22, 2011

Electronics and latest prototype

Readout: VFAT chip (designed for TOTEM)

- 128 channels analog front-end
- binary output for each channel for tracking
- provides fast OR function on input channels for triggering
- adjustable thresholds, gain, signal polarity, integration time of analog input signals
- 40 MHz clock signal sampling

GEM1/1 II (3/1/2/1)

- *active area: 990x(220-445) mm²*
- 3072 channels (1D readout)
- *Strip pitch = 0.8 mm*
- Several gas mixtures employed (flowing at 5 l/h):
 - Ar/CO₂ (70/30, 90/10)
 - Ar/CO₂/CF₄ (45/15/40, 60/20/20)
- **15** Tested in June 2011 (results currently being processed...)

Friday, July 22, 2011

Results from October 2010 test beam

• Muon beam from pions: 650 runs over p_i detector surfaces

- 3/2/2/2 with Ar/CO₂ (70/30)
- in each p_i a VFAT chip is allocated reading out the chamber behavior regions which in CMS will be at different η coordinates and then exposed to different rates of radiation
- *HV scan 3.9 ÷ 4.5 kV*
- Test beam held on June/July 2011 with 3/1/2/1 - Ar/CO₂/CF₄ chambers

2

space resolution [mm

0

300

200

• Trigger

- Evidence for better control of trigger rate (for candidates built-up from 2 GEM stations)
- Tracking
 - Results suggests tracking improvements for muons can be achieved
- Prototypes building
 - Application of new techniques improving detector assembling and performance
 - Acquiring knowledge to build excellent performance detectors

• DETECTOR

- Processing of June/July 2011 test beam data with latest prototypes is ongoing
- Construction test of 30x30 cm² prototype with new mechanics for get rid of thermal stretching
 - study feasibility on large scale detector
- TRACKING
 - Switch to GEM geometry simulations
 - Study muon reconstruction rescue in case of CSC ME1/1 off
 - Studies with real physics cases:
 - *low-pT forward muon from b-jets*
 - multi-leptons signatures from high energy scale hard processes
- TRIGGER
 - Simulation studies basically done
 - Future activities are going to be focused on choosing the most suited electronics for triggering