Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

sLHC requirements for the tracker

- Tracker Sensor RD program
- Tracker Trigger RD

R. D'Alessandro* on behalf of the CMS Tracker Collaboration * Università di Firenze & INFN- Firenze (Italy)

22 July 2011 - EPS Grenoble

Requirements

- The CMS tracker for sLHC needs to have:
 - higher radiation resistance, with respect to both instantaneous and integrated levels
 - higher readout granularity, to keep the channel occupancy at an adequate level

– develop sensors able to give information about track p_{τ} and direction for the trigger

 The Challenge: Build a replacement Tk for L>10³⁴ cm⁻²s⁻¹ with L1 trigger capabilities

22 July 2011 - EPS Grenoble

Requirements (2)

- Silicon sensors must survive accumulated dose levels 10 times higher than the current Tracker.
- Higher granularity and (perhaps) thinner sensors will be required made with different technologies.

22 July 2011 - EPS Grenoble

R. D'Alessandro on behalf of CMS Tracker

Frenoble, Rhône-Alpes France July 21-27 2011

HPK Wafer

Substrate types:

FloatZone (FZ), Magnetic -Czochralski (MCZ), Epitaxial (Epi).

Implants:

- p-in-n (N-type) , n-in-p (p-stop) (P-type), nin-p (p-spray) (Y-type)
- p-in-n (double metal), nin-p (p-stop; double metal), n-in-p (pspray; double metal)

22 July 2011 - EPS Grenoble

RD objectives

- Conduct tests, before and after irradiation, to determine the characteristics of single-sided silicon sensorsof various thicknesses and materials acquired from HPK in order to establish optimal material and strip/pixel features for the upgrade of the CMS Tracker.
- Collaboration wide effort. For example (this talk):

 Efforts on Multi-Strip-Sliconstrip Detector (MSSD) sensors at:

• Cern, Fermilab, Florence, KIT, Others

Many complicated and variegated scenarios • Examples (just for beam tests)

– Sensors for beam test in November?

- MSSD (mostly irradiated, MCz non-irradiated, FZ320 as reference)
- MPIX (MCz non-irradiated)
- Baby_Strixel (maybe, if possible)
- Sensors for beam test in October (HEPHY)
 - Baby_PA
 - Baby_Std_2nd_metal_layer
 - Baby_Add_2nd_metal_layer

Next year test beam with Baby_Std

22 July 2011 - EPS Grenoble

MSSD sensor under study 65744,25um x 32792um

• 12 regions – Different: pitch, width, ratios

regio		
1-12		
2-24	1	
3-8		
4-7		
5-12		
6-24		
7-8		
8-7		
9-12	in the second second second	ilimme
10-2		
11-8		
12-7		

region	pitch	implant width	alu width	w/p	DC Padsize	AC Padsize
1-120	120	16	29	0.133	85x38	150x50
2-240	240	34	47	0.142	85x38	150x50
3-80	80	10	23	0.125	85x38	150x50
4-70	70	8,5	21,5	0.121	85x38	150x50
5-120	120	28	41	0.233	85x38	150x50
6-240	240	58	71	0.242	85x38	150x50
7-80	80	18	31	0.225	85x38	150x50
8-70	70	15,5	28,5	0.221	85x38	150x50
9-120	120	40	53	0.333	85x38	150x50
10-240	240	82	95	0.342	85x82	150x82
11-80	80	26	39	0.325	85x38	150x50
12-70	70	22,5	35,5	0.321	85x38	150x50

22 July 2011 - EPS Grenoble

- Multi-SSD, N-type
- 240um Pitch
- 34um Implant
- 47um Al

22 July 2011 - EPS Grenoble

Reuse existing hardware

- We used TEC und TOBhybrids with 4 APV's
- Also produced many new pieces
 Pitch adapters for example:
 - TOB_hybrid_PA (44µm 110µm)
 - TEC_hybrid_PA (44µm 139µm)
 - 100 pieces TOB_hybrid_PA
 - TOB_Extension_PA (110µm)
 - TEC_Extension_PA (139µm)
 - MPIX_PA (multi-pixels 110µm)
 - MSSD_PA (multi-strips 139µm)

static measurements

22 July 2011 - EPS Grenoble

L.J. States

-

MSSD sensor mounting

- The sensor and the pitch adapter glued to a thin ceramic frame.
- Sensor and PA are then bonded.
- This is the basic assembly that is then shipped around the participating institutes.
- When measurements need to be done:
 - the assembly is placed on an aluminium support structure

bonds connect the sensor to two PCBs that route guard rings and strips to a connector

22 July 2011 - EPS Grenoble

Float Zone sensors

Three thicknesses: 320um, 200um, 120um.

C_back capacitance on all 12 regions on FZ thicknesses 120, 200 and 320um compared for N, P and Y

22 July 2011 - EPS Grenoble

Float Zone sensors

Interstrip capacitance on all 12 regions on FZ thicknesses 120, 200 and 320um compared for N, P and Y

Measurements

- Campaign just started. First irradiated sensors not measured yet.
- Intercalibration between centres is still ongoing.
- Setups are now stable and we have converged to a common procedure and data format for the results.
- Results are stored as xml files on an SQL database.

Trigger information

- Derive p_{τ} information LOCALLY
- In a B field, ideal case of cylindrical layers with non-flat modules:

 $p_{T}^{\text{meas}}[\text{GeV/c}] = 0.15 \text{ B}[\text{T}] \text{ R}[\text{m}] \frac{\Delta \text{R}[\mu\text{m}]}{\text{TW}[\mu\text{m}]}$

TW is the cluster size in terms of pitch

22 July 2011 - EPS Grenoble

Studies from data

- Performance of "trigger" modules evaluated with CMS data (7 TeV p-p collisions)
 - Mainly MinBias/QCD events, $\pi \& \mu$ tracks inside hadronic jets
 - good quality tracks selected: $\chi^2 < 2$, #hits>11, etc.

ternational Europhysics Conference on High Energy Physics renoble, Rhône-Alpes France July 21-27 2011

HEP 2011

Stacked modules

- Pair of corresponding strips wire-bonded to a pair of neighboring readout channels
- Wire-bonding performed at ~40 µm effective pitch
- NO pitch adapter

- Pair of corresponding strips wire-bonded to the same readout channel
- Wire-bonding performed at ~ 80 µm and ~120 µm effective pitch (2 prototypes)
- through pitch adapter

Stacked modules

 Detectors assembled with spare modules from the current CMS tracker

Bottom sens

22 July 2011 - EPS Grenoble

R. D'Alessandro on behalf of CMS Tracker

HEP 2011

Grenoble, Rhône-Alpes France July 21-27 2011

Level 1 w-bonds Level 2

Conclusions

- A systematic RD campaign for a new tracking system has begun.
- Many items (electronics, data links, sensors, triggering, cooling, mechanics, etc.)
- Sensor campaign well underway with the objective of having all relevant information in by the end of 2012.
- Trigger studies have already led to the production of stacked modules which could be the basis for a future trigger layer.

Strixels tests

Baby_Strixel Example

One Baby_Strixel is divided in 2 x 256 strips

22 July 2011 - EPS Grenoble

