

1

EPS-HEP 2011 - Grenoble - 21-27 July 2011

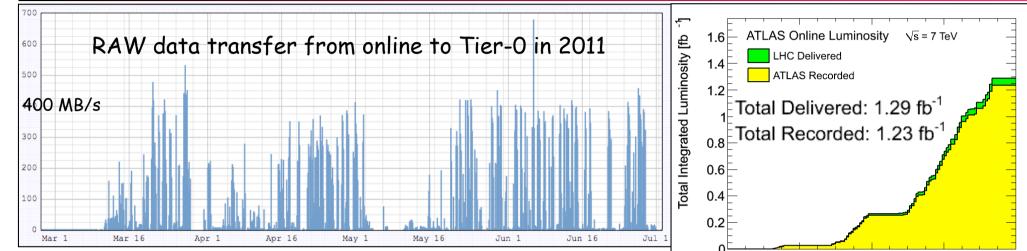
Distributed processing and analysis of ATLAS experimental data

Dario Barberis

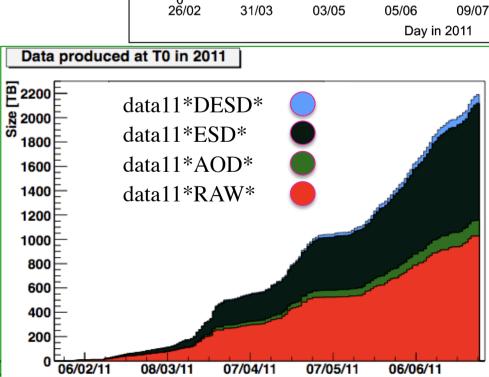
(Genoa University/INFN)

On behalf of the ATLAS Collaboration

Dario Barberis: ATLAS Distributed Computing

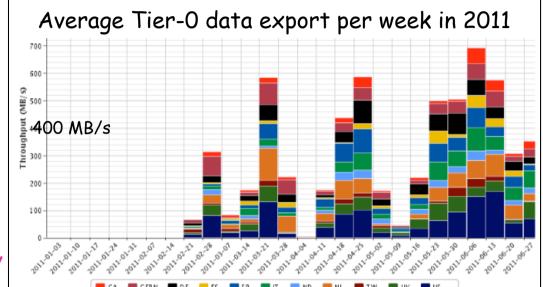


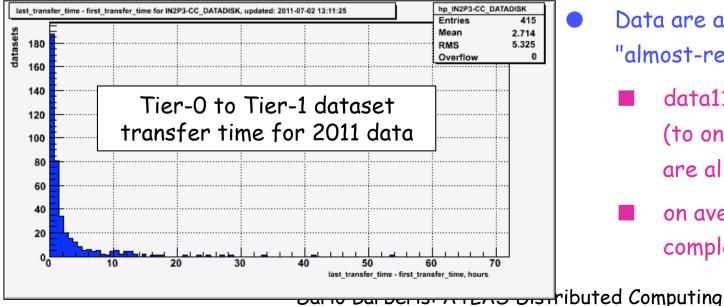
- Data collection
- Tier-0 processing
 - Fast calibration loop
 - Event reconstruction
 - Data export
- Some of the key distributed computing (Grid) technologies:
 - Data management and distribution with DDM/DQ2
 - Workload management with Panda
 - Re-processing campaigns and simulation production
 - Distributed analysis
 - Conditions Databases with Frontier
- Evolution of the computing model
- Outlook


Data taking in 2011

- We took until end June 2011 1 PB of RAW data. All data were:
 - Calibrated in real time (within 36 hours)
 - Reconstructed at Tier-0
 - Distributed on the Grid to 10 Tier-1 and many Tier-2 sites
- In total we produced 2.2 PB of distributed data

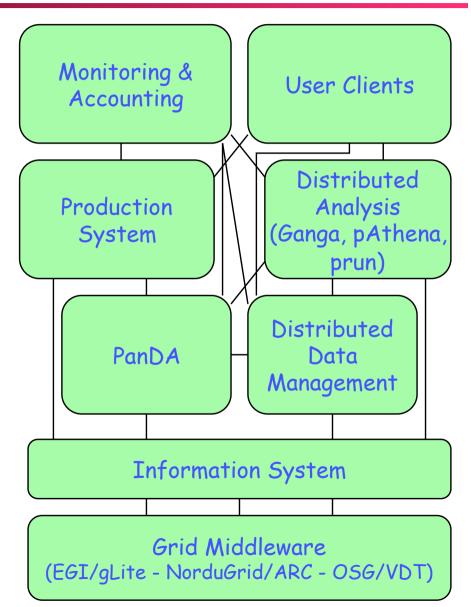
Dario Barberis: ATLAS





Data distribution on the Grid

- Data export from Tier-0 to Tier-1s:
 - RAW: 1 primary copy (on disk) + 1 custodial copy (on tape)
 - ESD: 1 primary + 1 secondary copy (both on disk at different sites)
 - DESD: 2 primary copies
 - AOD: 2 primary + 1 secondary copy


- Data are available for analysis in "almost-real" time. Example:
 - data11_7TeV AOD distribution (to one specific Tier-1 but they are all similar):
 - on average 2.7 hours to complete the dataset



ATLAS Grid Architecture

- ATLAS runs on 3 middleware suites:
 - gLite in most of Europe and several other countries (including all A-P countries)
 - ARC in Scandinavia and a few other small European countries
 - VDT in the USA
- ATLAS Grid tools interface with the middleware and shield the users from it
 - They also add a lot of functionality that is ATLAS specific
- The ATLAS Grid architecture is based on few main components:
 - Information system
 - Distributed data management (DDM)
 - Distributed production and analysis job management system (PanDA)
 - Distributed production (ProdSys) and analysis (Ganga/pAthena/prun) interfaces
 - Monitoring and Accounting tools
- DDM is the central link between all components
 - As data access is needed for any processing and analysis step! Dario Barberis: ATLAS Distributed Computing

Distributed data management: DDM/DQ2

 The Distributed Data Management (DDM) architecture is implemented in the DQ2 tools and additional services

- The unit of storage and transfer is the dataset:
 - A dataset contains all files with statistically equivalent events
- DDM takes care of:
 - Distributing data produced by Tier-0 to Tier-1s and Tier-2s
 - Distributing simulated and reprocessed data produced by Tier-1/2s
 - Distributing user and group datasets as requested
 - Managing data movement generated by production activities
 - Cataloguing datasets (files, sizes, locations etc.)
 - Providing usage information for each dataset replica
 - Deleting obsolete or unnecessary replicas of datasets from disk when disks are full
 - Providing end-users with client tools to operate on datasets (import/export/move etc)

Dario Barberis: ATLAS Distributed Computing

DESTINATIONS

EPS-HEP 2011 - Grenoble - 21-27 July 2011

2011-01-31 12-02-07 Nº 11-02-14 11-02-21

User Subscriptions

Distributed data management: DDM/DQ2

 $4 \,\mathrm{k}$

3ॄGB/s

(MB/

ghput (

Throu

2k

- Data are transferred around the world steadily at high rates (the Grid never sleeps!)
- Delicate balance between
 - Pre-placement
 - Dynamic data placement-
 - With automatic caching and cleaning
 - User requests

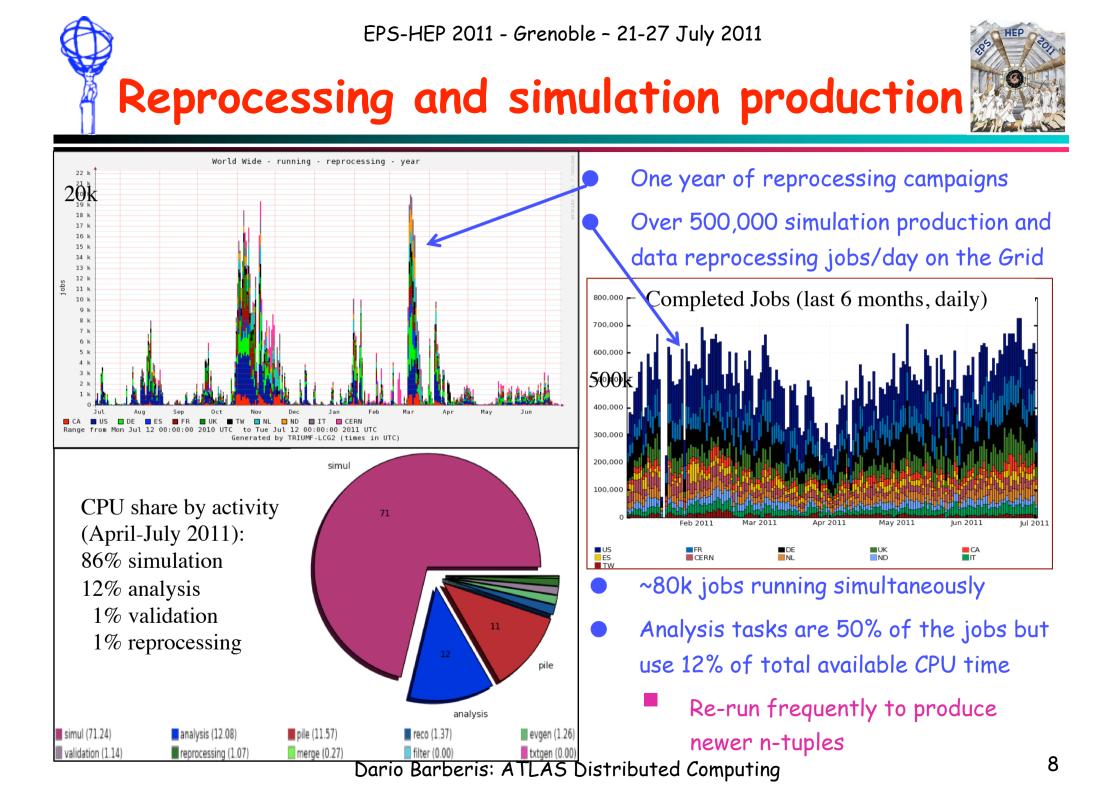
	TOTAL	CA+	CERN	DE+	ES+	FR+	÷	+ON	NL+	+MT	UK+	HS+
TOTAL	93 %	95 %	92 %	92 %	91 %	92 %	90 %	92 %	88 %	88 %	93 %	96 %
	2 GB/s	111 MB/s	372 MB/s	330 MB/s	98 MB/s	271 MB/s	118 MB/s	106 MB/s	169 MB/s	53 MB/s	211 MB/s	446 MB/s
CA+	97 %	97 %	95 %	98 %	95 %	98 %	99 %	96 %	98 %	90 %	95 %	99 %
	118 MB/s	65 MB/s	15 MB/s	5 MB/s	2 MB/s	4 MB/s	3 MB/s	2 MB/s	5 MB/s	1 MB/s	4 MB/s	13 MB/s
CERN	90 %	90 %	88 %	90 %	79 %	95 %	85 %	90 %	85 %	91 %	87 %	95 %
	185 MB/s	6 MB/s	71 MB/s	20 MB/s	4 MB/s	15 MB/s	6 MB/s	9 MB/s	9 MB/s	7 MB/s	13 MB/s	27 MB/s
DE+	91 %	88 %	93 %	91 %	85 %	94 %	94 %	90 %	89 %	82 %	90 %	93 %
	373 MB/s	7 MB/s	38 MB/s	218 MB/s	7 MB/s	15 MB/s	13 MB/s	8 MB/s	16 MB/s	5 MB/s	11 MB/s	34 MB/s
ES+	93 %	94 %	90 %	93 %	93 %	92 %	94 %	95 %	88 %	85 %	91 %	94 %
	111 MB/s	2 MB/s	13 MB/s	6 MB/s	61 MB/s	5 MB/s	3 MB/s	3 MB/s	4 MB/s	2 MB/s	5 MB/s	8 MB/s
FR+	92 %	86 %	96 %	93 %	91 %	91 %	94 %	97 %	91 %	88 %	88 %	96 %
	319 MB/s	6 MB/s	45 MB/s	17 MB/s	5 MB/s	164 MB/s	8 MB/s	9 MB/s	14 MB/s	5 MB/s	15 MB/s	31 MB/s
IT+	91 %	92 %	94 %	95 %	92 %	91 %	90 %	96 %	92 %	79 %	87 %	94 %
	127 MB/s	3 MB/s	29 MB/s	7 MB/s	2 MB/s	6 MB/s	62 MB/s	3 MB/s	3 MB/s	2 MB/s	3 MB/s	8 MB/s
ND+	93 %	97 %	94 %	97 %	95 %	95 %	94 %	92 %	91 %	94 %	95 %	96 %
	91 MB/s	1 MB/s	18 MB/s	4 MB/s	1 MB/s	3 MB/s	2 MB/s	46 MB/s	2 MB/s	722 kB/s	3 MB/s	9 MB/s
NL+	88 %	81 %	95 %	91 %	69 %	90 %	88 %	89 %	87 %	88 %	91 %	90 %
	182 MB/s	3 MB/s	34 MB/s	12 MB/s	3 MB/s	7 MB/s	4 MB/s	5 MB/s	92 MB/s	2 MB/s	6 MB/s	14 MB/s
TW+	92 %	93 %	91 %	94 %	92 %	97 %	88 %	91 %	94 %	90 %	94 %	92 %
	54 MB/s	1 MB/s	11 MB/s	4 MB/s	852 kB/s	4 MB/s	1 MB/s	2 MB/s	1 MB/s	22 MB/s	2 MB/s	4 MB/s
UK+	93 %	86 %	89 %	91 %	68 %	91 %	87 %	91 %	88 %	90 %	95 %	91 %
	206 мв/s	3 MB/s	29 MB/s	7 MB/s	3 MB/s	8 MB/s	4 MB/s	3 MB/s	5 MB/s	2 мв/s	130 MB/s	14 MB/s
US+	95 %	91 %	95 %	94 %	90 %	94 %	91 %	94 %	91 %	81 %	93 %	96 %
	517 мв/s	14 MB/s	68 MB/s	30 MB/s	9 mB/s	39 MB/s	14 MB/s	17 MB/s	17 мВ/s	4 MB/s	21 MB/s	285 MB/s

Excellent data transfer efficiency achieved overall

711-03-28 .0A-0A 12-04-11

01 03-14 03-21 11-03-14 03-21

711-02-28-07


Average data throughput per week in 2011 (MB/s)

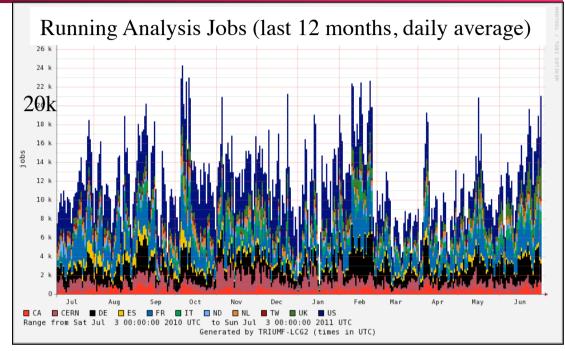
93% average success rate in 2011

1.04-18 04-25

11-05-02

- First retry always succeeds \geq
- Users can direct the outputs of their analysis jobs to their "home" on the Grid
 - Asynchronous transfer (plus retry) guarantees success in shortest time

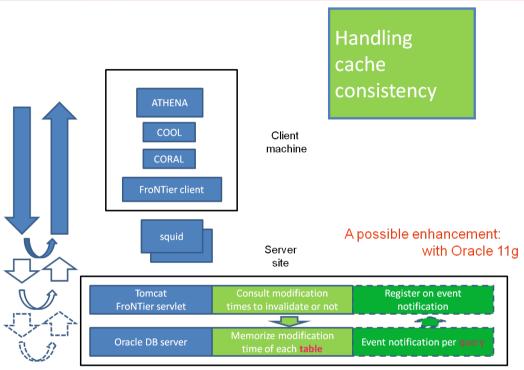




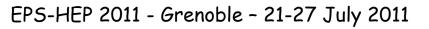
Distributed analysis on the Grid

- Analysis jobs run world-wide
 - Jobs go to the data as much as possible
- Grid reliability issues...
 - automatic exclusion (and reinclusion) of analysis queues that do not perform well, measured via automatic HammerCloud test jobs

- Work in progress to improve task efficiency (and user happiness)
 - Merging of output files
 - Automatic retrial of jobs that fail for welldefined Grid-related reasons
 - Improved analysis tasks book-keeping, to better keep track of the whole workflow


Conditions Databases

- Frontier deployed in 2009 to enable distributed access to the conditions DB
- Flow of database data:
 - Oracle: CERN online -> CERN offline -> 3D (BNL, TRIUMF, RAL, KIT, IN2P3-CC)
 - Frontier server at each of the above sites connects to local Oracle database
 - Local Squid contacts nearest Frontier server
 - With failover to next-to-nearest


Map of installed Squids

Now: oracle 10g

- Frontier reduces considerably the access time to DB data from remote sites
- It is particularly important for sites with low bandwidth and high latency towards Oracle servers
- TLAS Distributed Computing

Evolution of the Computing Model in 20

- Break the cloud* boundaries
 - I Introduce flexibility in data distribution and job assignment
- Allow inter-cloud direct Tier-1<->Tier-2 and Tier-2<->Tier-2 transfers according to network connectivity
 - For data placement, user subscriptions and job I/O
 - Allow job distribution from Tier-1s to Tier-2s in other clouds
 - Output files are then collected back to the original Tier-1 (of course)
- Reduce the number of data replicas to have more data on disk
- Introduce dynamic data replication and deletion based on dataset popularity
- Reduce the multiplicity of Oracle database servers and equip all remaining ones with Frontier web servers
- Integrate all 11 LFCs into a single catalogue at CERN (work in progress)
 - No longer one catalogue for each cloud
- Move towards using CVMFS (web-based file system) for software release and conditions data files distribution (tests in progress)
- ★ (An ATLAS Grid cloud includes a Tier-1 and all associated Tier-2/3s)

Dario Barberis: ATLAS Distributed Computing

Summary and Outlook

- The ATLAS Distributed Computing infrastructure is working thanks to many efforts in preparation and many people working in operations
 - We are able to
 - Process, distribute, and reprocess the data
 - Analyse the data
 - Provide support to our large community
- As we get experience with *reality* we are looking at the evolution of the model and our implementations, e.g.
 - Less-strict cloud model
 - Better data distribution for analysis
 - Improved support for analysis

Dario Barberis: ATLAS Distributed Computing