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�Abstract

We study the hadron production at finite values of temperature and baryon
density by means of an effective relativistic mean-field model with the inclusion
of the full octet of baryons, the ∆-isobar degrees of freedom and the lightest pseu-
doscalar and vector mesons. These last particles are considered in the so-called
one-body contribution, taking into account of an effective chemical potential and
an effective mass depending on the self-consistent interaction between baryons.
The analysis is performed by requiring the Gibbs conditions on the global con-
servation of baryon number, electric charge fraction and zero net strangeness. In
this context, we study the influence of the ∆-isobars degrees of freedom in the
behavior of different hadron ratios and strangeness production.
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�Relativistic mean field model

The relativistic mean-field (RMF) model, first introduced by Walecka and
Boguta-Bodmer in the mid-1970s [1,2], is widely successful used for describing
the properties of finite nuclei as well as hot and dense nuclear matter [3,4]. In
this context, the total baryon Lagrangian density can be written as

LB = Loctet + L∆ + Lqpm , (1)

where Loctet stands for the full octet of baryons (p, n, Λ, Σ
+, Σ0, Σ−, Ξ0, Ξ−),

L∆ corresponds to the degree of freedom for the ∆ isobars (∆++, ∆+, ∆0, ∆−)
and Lqpm is related to a quasi-particle gas of the lightest pseudoscalar and vector
mesons with effective chemical potentials and effective masses (see below for
details).
The RMF model for the full octet of baryons (JP = 1/2+) was originally studied
by Glendenning with the following standard Lagrangian [5]

Loctet =
∑
k
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In the framework of the non-linear Walecka model it is predicted that there is
a phase transition from nucleonic matter to ∆-exited nuclear matter and the
occurrence of this transition depends on the coupling constants [6]. It has been
pointed out that the existence of degree of freedom related to ∆ isobar can be
very relevant in relativistic heavy ion collisions and in the core of neutron stars
[7,8]. The Lagrangian density concerning the ∆ isobar can be expressed as

L∆ = ∆̄µ [iγ
µν
α (∂α + igω∆ω

α + igρ∆ t⃗ · ρ⃗ α)− (M∆ − gσ∆σ)γ
µν]∆ν , (3)

where ∆µ is the Rarita-Schwinger spinor, t⃗ is the isospin operator for the ∆
baryon.
In the RMF approach baryons are considered as Dirac quasiparticles moving in
classical meson fields and the field operators are replaced by their expectation
values. The effective mass of k-th baryon particle is given by

M ⋆
k =Mk − gσkσ . (4)

In the meson fields equations appear the couplings with all considered baryons
(octet and ∆s) and the baryon and the scalar (ρBi and ρSi ) densities of the baryon
particle of index i. They are given by

ρBi = γi

∫
d3k

(2π)3
[fi(k)− f i(k)] , (5)

ρSi = γi

∫
d3k

(2π)3
M ⋆

i

E⋆
i

[fi(k) + f i(k)] , (6)

where γi = 2Ji+1 is the degeneracy spin factor of the i-th baryon and fi(k) and
f i(k) are the standard fermion particle and antiparticle distributions defined in

terms of the baryon effective energy E⋆
i (k) =

√
k2 +Mi

⋆2 and of the effective
chemical potentials µ∗i

µ∗i = µi − gωi ω − gρi t3i ρ , (7)

where t3i is the third component of the isospin of the i-th baryon.
Because of we are going to describe finite temperature and density nuclear matter
with respect to strong interaction, we have to require the conservation of three
”charges”: baryon number, electric charge and strangeness number. The systems
is described by three independent chemical potentials: µB, µC and µS, respec-
tively, the baryon, the electric charge and the strangeness chemical potentials of
the system. Therefore, the chemical potential of particle of index i can be written
as

µi = bi µB + ci µC + si µS , (8)

where bi, ci and si are, respectively, the baryon, the electric charge and the
strangeness quantum numbers of the i-th hadronic species.
At low baryon density and high temperature, the contribution of the lightest
pseudoscalar and vector mesons to the total thermodynamical potential becomes
very relevant. From a phenomenological point of view, we can take into account
of these contributions by incorporating such mesons by adding to the thermody-
namical potential their one-body contribution, i.e. the contribution of an ideal
Bose gas with an effective chemical potential.
Following Ref.[8], the values of themeson effective chemical potentials µ⋆j
are fixed from the ”bare” chemical potentials and writing them in terms of the cor-
responding baryon effective chemical potentials, respecting the strong interaction.
For example, for pions (and rho mesons) we have that µπ+ = µρ+ = µC ≡ µp−µn
and its effective chemical potential can be written as

µ∗π+ = µ∗ρ+ ≡ µ∗p − µ∗n . (9)

For the other mesons, we have

µ∗K+ = µ∗K∗+ ≡ µ∗p − µ∗Λ(Σ0) , (10)

µ∗K0 = µ∗K∗0 ≡ µ∗n − µ∗Λ(Σ0) , (11)

while the others non-strange neutral mesons have a vanishing chemical potential.
Thus, the effective meson chemical potentials are coupled with the meson fields
related to the interaction between baryons. As seen in the next section, this
assumption represents a crucial feature in the EOS at finite density and tem-
perature and can be seen somehow in analogy with the hadron resonance gas
within the excluded-volume approximation. There the hadronic system is still
regarded as an ideal gas but in the volume reduced by the volume occupied by
constituents (usually assumed as a phenomenological model parameter), here we
have a (quasi free) mesons gas but with an effective chemical potential which
contains the self-consistent interaction of the meson fields.

As well as the effective meson chemical potentials has been obtained from a
difference between the effective baryon chemical potentials respecting the Gibbs
conditions and the strong interaction, so we postulate that themeson effective
masses can be expressed as a difference of the effective baryon masses respecting
the strong interaction and the main processes of meson production/absorption
involving different baryons. More explicitly, concerning pions, being the ∆-isobar
one of the most prominent feature of πN dynamics, the main process involving
different baryons can be identified with ∆ ↔ πN . The energy balance can be
expressed in terms of a mass difference of the involved particles plus an additional
kinetic energy ∆E∆N : mπ =M∆−MN −∆E∆N , where mπ is the vacuum mass
of the pion. Assuming ∆E∆N to be almost the same in the free space and in
nuclear medium (∆E∗

∆N ≃ ∆E∆N), we can write the effective pion mass as

m∗
π =M ∗

∆ −M ∗
N −∆E∗

∆N ≃ mπ − (xσ∆ − 1)gσN σ , (12)

where the last equivalence follows from Eq.(4) and xσ∆ = gσ∆/gσN .
Concerning the other strangeless mesons, they can be considered as correlated
states of pions in the nuclear medium having the corresponding dependence of
the effective meson masses. For example, for the ρ meson: ρ ↔ 2π and for the
ω meson: ω ↔ 3 π. Therefore, we have, respectively,

m∗
ρ = mρ − 2 (xσ∆ − 1)gσN σ , (13)

m∗
ω = mω − 3 (xσ∆ − 1)gσN σ . (14)

On the other hand, because η meson is not allowed to strongly decay into pions,
for η and η′ mesons we consider their respective vacuum masses.
Following the above scheme and considering strong interaction only, the effec-
tive kaon masses will be related to the difference of the effective hyperons and
nucleons masses mainly by means of two different channels: the associate pro-
duction/absorption due to pion conversion modes on a single nucleon

πN ↔ ΛK , πN ↔ ΣK , πN ↔ ΞKK , (15)

and the channel due to non-pionic modes on two nucleons

NN ↔ NΛK , NN ↔ NΣK , NN ↔ NΞKK , (16)

and any conjugate processes involving the same type of particle/antiparticle.
In literature there is uncertainty about which of the two above channels is dom-
inant in nuclear medium at different temperatures and densities. Taking into
account that we are going to study our EOS in regime of hot nuclear matter,
where mesons become dominant on the baryon degrees of freedom, for simplicity
in the following we will limit our considerations to the first channel only.
Considering the processes indicated in Eq.(15), kaons are always related to the
presence of hyperons, therefore, being the scalar σ field less attractive for hyper-
ons than for nucleons (xσY < 1), we aspect an increase in the effective kaon mass
m∗
K . Following the above criterion, we can set the kaon effective mass as follows

m∗
K = mK +

[
xσ∆ − xσΛ + xσΣ

2

]
gσN σ , (17)

where we have taken the average contribution between the first two modes of
Eq.(15), neglecting the last one involving multistrange production/absorption
and we have used Eq.(12) for the effective pion mass.
Moreover, K∗ meson can be viewed as a strongly correlated state of K and π
(K∗ ↔ Kπ) and its effective mass will be expressed as

m∗
K∗ = mK∗ +

[
1− xσΛ + xσΣ

2

]
gσN σ , (18)

where we have made explicit the effective pion and kaon masses given in Eq.s
(12) and (17), respectively. Finally, according to the Zweig rule, ϕ meson decays
mainly into two kaons (ϕ ↔ 2K), therefore, we can assume that its effective
mass to be related to the effective kaons meson mass as follows

m∗
ϕ = mϕ + 2

[
xσ∆ − xσΛ + xσΣ

2

]
gσN σ , (19)

where we have used the effective kaon mass given in Eq.(17).
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Effective hadronic equation of state

and particle ratios

The numerical evaluation of the above thermodynamical quantities can be per-
formed if the meson-nucleon, meson-∆ and meson-hyperon coupling constants are
known. Concerning the meson-nucleon coupling constants they are determined
to reproduce properties of equilibrium nuclear matter such as the saturation
densities, the binding energy, the symmetric energy coefficient, the compression
modulus and the effective Dirac mass at saturation. The set marked TM1 is from
Ref.[4] and GM3 is from Glendenning and Moszkowski [5]. The implementation
of hyperon degrees of freedom comes from determination of the corresponding
meson-hyperon coupling constants that have been fitted to hypernuclear proper-
ties [8,9].
In Fig. 1, we report for different temperatures (in units of MeV) the pressure as a
function of the baryon chemical potential. As expected, the value of the pressure
grows sensibly at higher temperature also at low baryon chemical potentials, in
agreements with statistical thermal model predictions.
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Fig. 1 - Pressure as a function of the baryon chemical potential µB at different
values of temperature (in units of MeV).

In Fig. 2, we report, for the most relevant mesons, the behavior of the effective
particle chemical potentials µ∗i , the effective masses m∗

i as a function of the
baryon chemical potential at different temperatures (solid lines: T = 60 MeV,
long dashed lines: T = 100 MeV, short dashed lines: T = 140 MeV). We can
observe that effective µ∗i and m

∗
i result to be significantly altered respect to the

case of a free meson gas and, consequently, the particle densities too.
In the following, we study the influence of the ∆-isobars degrees of freedom in
the behavior of different particle ratios and strangeness production.
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Fig. 2 - Meson effective chemical potentials µ∗i and effective masses m∗
i (in units

of the respective values corresponding to a free meson gas) versus the baryon
chemical potential for different temperatures (solid lines: T = 60 MeV, long
dashed lines: T = 100 MeV, short dashed lines: T = 140 MeV).
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Fig. 3 - Variation of the K+/K− ratio with respect to baryon chemical potential
at fixed temperature T = 100 MeV. The value rm corresponds to the average
value rm = 1.30 for TM1 and rm = 1.46 for GM3 parameter sets (rs = gσ∆/gσN).

Finally, it is interesting to investigate the study of the EOS also at high
temperatures and low baryon chemical potential regime. At this scope, in Fig.
4, we report the results of various particle-antiparticle ratios and K+/π+ ratio
as a function of the p/p ratio for different values of temperature. The ratios
are reported for the GM3 parameter set, however, we have verified that very
close results are obtained for the other two parameter sets. Also in this case
we can observe good agreement with the results obtained in the framework of
statistical-thermal models and with experimental SPS and RHIC data [10].
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Fig. 4 - Particle-antiparticle and K+/π+ ratios as a function of the p/p ratio
for different temperatures. The ∆ coupling ratios are fixed to rs = rv = 1. The
ratios of Ξ+/Ξ− at T = 80, 120 MeV are not reported because they are very
strictly to the Λ/Λ ones.
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