

Design and R&D of very forward calorimeters for detectors at future e⁺e⁻ collider

Ivanka Božović-Jelisavčić [on behalf of the FCAL Collaboration]

Vinča Institute of Nuclear Sciences Belgrade, Serbia

I.Božović-Jelisavčić HEP 2011 Grenoble, France July 21-27 2011

Outline

- R&D of FCAL
- Design, status and challenges of the forward region
- Detectors in the forward region
- LumiCal and BeamCal performance: simulation
- Luminosity measurement
- Electron identification in the forward region
- Read-out electronics for the forward calorimeters
- LumiCal and BeamCal performance: test-beam
- CLIC within FCAL
- Summary and future plans

R&D of FCAL

- FCAL dedicated effort to develop novel detector technologies to instrument the very forward region of future linear collider

- ILC, CLIC are in our focus
- Estimates of performance
 benchmarks are based on the
 Standard Model concepts
 should be flexible to accommodate
 LHC discoveries

Design, status and challenges

- Ongoing simulations to optimize detector design for :
- precise luminosity measurement,
- hermeticity (missing energy, multi-jet final states),
- electron detection at low polar angles (SUSY)
- assisting beam tuning (fast feedback of

BeamCal data to machine)

- shielding to the inner detectors.

Very forward region of the ILD detector LumiCal [31,77]mrad BeamCal [5.8,43.5]mrad

Challenges:

- Luminosity precision at permille level, mechanical precision of the LumiCal
- BeamCal: e identification over the huge beamstrahlung background, extreme radiation hardness (10⁴/BX low energetic e⁺e⁻ pairs ~10 TeV/BX or several MGy/year)
- + Read-out: high input rate (3.25 MHz), high occupancy

Detectors in the forward region

Technologies:

- LumiCal sampling SiW
- BeamCal W absorber +poly(mono)crystaline CVD diamond/GaAs/rad-hard Si
- Pair Monitor 2.10⁵ Si pixel (SoI) $(0.4 \ 0.4)$ mm

-150 -100 -50

0

50

-small Moliere radius O(1cm) – good E resolution - segmentation (azimuthal/radial): 48/64 - energy resolution: 0.21 [GeV^{1/2}] -resolution in polar angle: (2.18±0.02)·10⁻² mrad

- Radiation hard sensors -Beam parameters measurement - (σ_x permille level, σ_v , σ_z ~ few percent)

I.Božović-Jelisavčić

X'[mm]

LumiCal performance: simulation

Luminosity measurement

Bhabha scattering is pure (99%) QED process.
Counting experiment.
However, corrections (and their uncertainties are present).
Dominant systematics comes from

2-photon process and beam-beam interaction effects

I.Božović-Jelisavčić

Systematic uncertainties of luminosity measurement at 500 GeV

Source	Value	Uncertainty	Luminosity Uncertainty
$\sigma_{ heta}$	$2.2{ imes}10^{-2}$ [mrad]	100%	1.6×10 ⁻⁴
Δ_{θ}	$3.2{ imes}10^{-3}$ [mrad]	100%	1.6×10^{-4}
ares	0.21	15%	10 ⁻⁴
luminosity spectrum			10^{-3}
bunch sizes σ_x , σ_z ,	655 nm, 300 $\mu{\rm m}$	5%	1.5×10^{-3}
two photon events	2.3×10^{-3}	40%	0.9×10^{-3}
energy scale	400 MeV	100%	10 ⁻³
polarisation, e^- , e^+	0.8, 0.6	0.0025	1.9×10^{-4}
total uncertainty			$2.3 imes10^{-3}$

* 100% = Upper limit – the size of effect is taken as uncertainty

-It is proven (in simulation) that luminosity can be measured at 500 GeV centerof-mass energy at a permille level

-Most of the systematic effects can be taken as corrections once their experimental uncertainties are known ($\Delta \theta$, miscounts due to physics background, BHSE).

Electron identification in the forward region

- Subtraction of pair deposits + shower
 finding algorithm = high electron detection
 efficiency
- Important for SM background reduction in E-missing searches

Read-out electronics for the forward calorimeters

LumiCal readout architecture:

- 2barrels * 30planes *
 - 48sectors * 64pads
- ~200 000 channels

First prototypes of all blocks already done: Silicon sensor from Hammamatsu, 8 channels front-end ASIC, 8 channels 10 bit pipeline ADC, Data concentrator implemented in Xilinx FPGA

Test Beam DESYII

Stand-by box Device under test

LumiCal

- -Sensors prototyped and cross-calibrated in different labs/Cracow, DESY, Tel Aviv
- FE and ADC ASICs developed (Cracow) and tested/ Cracow, DESY

BeamCal

- Sensor prototyped for different technologies (GaAs, rad-hard Si)/JINR, SLAC
- Frontend ASICs designed and prototyped/Cracow, SLAC

The full chain sensor-fan-out- FE ASICs tested at Beam 22 at DESY II, 4.5 GeV electrons

BeamCal performance: test-beam

I.Božović-Jelisavčić

LumiCal performance: test-beam

Readout chain

Biasing and power blocks
Output buffers
FE ASICs bonded onto PCB
Sensor and fanout glued
16 sensor pads bonded (300µm Si, 1.8mm pitch, 10.5mm - 25.5mm wide)

Signal to noise ratio ~19 Cross-talk ≤ 1%

CLIC within FCAL

-Luminometer fiducial volume [43-80]mrad

- (Incoherent) pair background deteriorates E resolution for 1% (20 BX), 10-30% for 1 train (312 BX) Ongoing studies:

- Background from coherent and incoherent pairs (CERN)
- Background impact on energy resolution (Tel Aviv)
 - Physics background (4-f) (Vinca Belgrade)
 - + Design and construction of the mechanical structure for FCAL (CERN)

I.Božović-Jelisavčić

Summary

- Design of the calorimeters in the very forward region at future linear collider (ILC) is developed and optimized with Monte Carlo simulations. FCAL design study is extended to CLIC.

- Sensors and read-out electronics have been designed and prototyped.
- Assembled prototypes (sensor-fan-out- FE ASICs) have been satisfactorily tested for both calorimeters: luminometer and the beam calorimeter.

- It has been shown that luminometer can be designed in such a way to meet requirement on luminosity precision at permille level (precision EW, extended gauge theories, anomalous TGCs...).

- It has been demonstrated that high energy electrons can be efficiently detected down to very low polar angles of a few mrad.

Future plans

- Ongoing preparation of ILC EDR 2012 and CLIC CDR until the end of 2011

-FCAL at AIDA (FP7-INFRASTRUCTURES-2010-1):

- -Design and construction of the mechanical structure to accommodate the prototype calorimeter (design 2012, manufacturing 2013, ready 2014)
- Multichannel (64) readout ASICs: design start 2011, 1st prototype production, 2012, 2nd 2013
- Complete prototype of sensor plane 2012
- DAQ: 1st DIF prototype 2011, prototype of complete DAQ 2012, ready 2013
- Design fixed beginning 2013
- Production 2014

BACKUP

I.Božović-Jelisavčić

LumiCal and BeamCal parameters

LumiCal	Unit		BeamCal	Unit	14 mrad
Absorber layer	mm	3.5	Graphite shield thickness	mm	100
Air gap	mm	0.1	Absorber layer	mm	3.5
Sensor thickness 1 + pad metalization	X _o mm	0.320 + 0.020	Sensor layer 1 X ₀	mm	0.3
Fanout thickness	mm	0.4	Readout plane /air gap	mm	0.2
Total plane thicknes	s mm	4.355	total X ₀	int	30
Total X_0	int	30	x/y/z position	mm	+24.2/0/±3450
x/y/z position	mm	+15.9/0/2500	R _{inner} (sensitive area)	mm	20
R _{inner} * (sensitive area) mm	80	R _{outer} * (sensitive area)	mm	150
R _{outer} (sensitive area)) mm	195.2	R _{beam} in ***	mm	15
θ_{inner}	mrad	31	Α	mrad	ΕQ
θ_{outer}	mrad	78	Uinner	mau	5.0
Tilt	mrad	7	θ_{outer}	mrad	43.5
Space for electronic (outside the plane)	s mm	4.5	Tilt	mrad	7
Mass of the LCAL (1 arm)	kg	211.319	~ Weight of absorber and sensor (sensitive area)	kg	144.4

TestBeam DESY II

I.Božović-Jelisavčić

BeamCal test-beam: temperature dependence

I.Božović-Jelisavčić

LumiCal Front-End electronics

Existing prototypes:

- 8 channels in AMS 0.35um
- Cdet $\approx 0 \div 100 \text{pF}$ (in new specs: Cdet<30 pF)
 - 1st order shaper (Tpeak ≈ 60 ns)
 - Variable gain:
 - calibration mode MIP sensitivity (~4fC)
 - physics mode input charge up to 10pC
 - Prototypes fabricated and tested
 - power consumption 8.9 mW/channel
 - event rate up to 3 MHz
 - Crosstalk < 1%

• 8 channels of 10 bit pipeline ADC

- AMS 0.35um technology
- Layout with 200um ADC pitch
- Digital multiplexer/serializer:
 - Serial mode (~250MHz): one data link per all channels (max fsmp ~ 3 MSps)
 - Parallel mode (~250MHz): one data link per channel (max fsmp ~ 25 MSps)
 - Test mode: single channel output (max fsmp ~50 MSps)
- High speed LVDS drivers (<=1GHz)
- Power switching on/off
- Low power DAC voltage/current biasing
- Precise BandGap reference source
- Temperature sensor
- The only external analog signal reference voltage (differential)

Multichannel ADC

- SINAD ~60dB, ENOB 9.7 bit
- INL<0.7LSB, DNL<0.65 LSB

2.6mm x 3.2mm

LumiCal mechanical issues

IN SITU

- **LPS prototype** monitors LumiCal as a whole object
- Obtained accuracy 0.5µm in the X-Y plane and $1.5\mu m$ in z direction – two orders of magnitude better than required
- Method for measuring displacement of individual sensor layers/inner radius under study

