

Determination of the light quark masses from $\eta \to 3\pi$

Emilie Passemar

IFIC

CSIC-University of Valencia

Europhysics Conference on High Energy Physics Grenoble, July 22nd, 2011

In collaboration with G. Colangelo (ITP-Bern), S. Lanz (Lund University) & H. Leutwyler (ITP-Bern)

Ph.D. Thesis of S. Lanz, University of Bern, May 12, 2011 Article in preparation 1. Introduction and Motivation

2. Dispersive analysis of $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays

3. Results

4. Conclusion and outlook

1. Introduction and Motivation

1.1 $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays: (m_u-m_d) Golden Channel

Decay forbidden by isospin symmetry

$$\implies A \sim (m_u - m_d) \quad \text{or} \quad A \sim \alpha_{em}$$

• Electromagnetic effects are small

Sutherland's theorem'66 Baur, Kambor & Wyler'95 Ditsche, Kubis & Meißner'09

Decay rate measures the size of isospin breaking in the SM
 Direct probe of m_u - m_d

Emilie Passemar

1.2 $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays

$$s = \left(p_{\pi^{+}} + p_{\pi^{-}}\right)^{2}, \quad t = \left(p_{\pi^{-}} + p_{\pi^{0}}\right)^{2}$$
$$u = \left(p_{\pi^{0}} + p_{\pi^{+}}\right)^{2}$$
$$+ t + u = M_{\eta}^{2} + M_{\pi^{0}}^{2} + 2M_{\pi^{+}}^{2} \equiv 3s_{0}$$

$$\langle \pi^{+}\pi^{-}\pi^{0}_{out} | \eta \rangle = i (2\pi)^{4} \delta^{4} (p_{\eta} - p_{\pi^{+}} - p_{\pi^{-}} - p_{\pi^{0}}) A(s,t,u)$$

• Lowest order amplitude: Current algebra

Osborn, Wallace'70

5

$$A(s,t,u) = \frac{B_0(m_d - m_u)}{3\sqrt{3}F_{\pi}^2} \left[1 + \frac{3(s - s_0)}{M_{\eta}^2 - M_{\pi}^2} + O(m) \right] + O(e^2m)$$

Prediction:
$$\Gamma_{\eta \to 3\pi} = 66 \text{ eV}$$
 and $\Gamma_{exp} = 197 \pm 29 \text{ eV} \implies Problem!$
in 1985
Emilie Passemar HEP2011, Grenoble, 22 July 2011

S

1.3 Dispersion relations

• Solution to this problem: Large final state interactions

Roiesnel & Truong'81

1.3 Dispersion relations

Solution to this problem: Large final state interactions

Roiesnel & Truong'81

- Higher order corrections
 - ChPT at two loops Bijnens & Ghorbani'07 but many LECs to determine at $\mathcal{O}(p^6)$!
 - Use of dispersion relations
 - > analyticity, unitarity and crossing symmetry
 - Take into account all the rescattering effects

Kambor, Wiesendanger & Wyler'96 Anisovich & Leutwyler'96 Walker'98

Emilie Passemar

1.4 New dispersive analysis

Dispersive analysis following *Anisovich & Leutwyler* approach with new inputs:

> New $\pi\pi$ phase shifts available, extracted with a better precision

Ananthanarayan et al'01, Colangelo et al'01 Descotes-Genon et al'01 Kaminsky et al'01, Garcia-Martin et al'09

New experimental programs, precise Dalitz plot measurements CBall-Brookhaven, KLOE (Frascati) TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich)

• NB: Other recent analyses

> Analytic dispersive Kampf, Knecht, Novotný, Zdráhal '11 - see poster

> NREFT approach Schneider, Kubis, Ditsche'11

Emilie Passemar

2. Dispersive Analysis of $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays

2.1 Strategy

• Instead of determining $(m_u - m_d) \implies extraction of Q$

$$Q^{2} = \frac{m_{s}^{2} - \hat{m}_{u}^{2}}{m_{d}^{2} - m_{u}^{2}} \qquad \frac{m_{d} + m_{u}}{2} \text{ since } Q^{2} = \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2} - M_{\pi}^{2}}{\left(M_{K^{0}}^{2} - M_{K^{+}}^{2}\right)_{QCD}} \left[1 + O(m_{q}^{2}, e^{2})\right]$$

•
$$\Gamma_{\eta
ightarrow 3\pi} \propto \left|A\right|^2$$

 $\succ \Gamma_{\eta \rightarrow 3\pi}$ measured by KLOE, MAMI, COSY

$$> A(s,t,u) = -\frac{1}{Q^2} \frac{M_K^2}{M_\pi^2} \frac{M_K^2 - M_\pi^2}{3\sqrt{3}F_\pi^2} M(s,t,u)$$

M(s,t,u) computed from dispersive treatment

Emilie Passemar

(

2.2 Method: Representation of the amplitude

• Decomposition of the amplitude as a function of isospin states

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

Fuchs, Sazdjian & Stern'93 Anisovich & Leutwyler'96

- $> M_I$ isospin / rescattering in two particles
- > Amplitude in terms of S and P waves \implies exact up to NNLO ($\mathcal{O}(p^6)$)
- Main two body rescattering corrections inside M_I
- Functions of only one variable with only right-hand cut of the partial wave $\implies disc[M_I(s)] \equiv disc[f_\ell^I(s)]$
- Elastic unitarity Watson's theorem

$$disc \left[f_{\ell}^{I}(s) \right] \propto t_{\ell}^{*}(s) f_{\ell}^{I}(s)$$

with $t_{\ell}(s)$ partial wave of elastic $\pi\pi$ scattering

Emilie Passemar

2.3 Dispersion Relations for the $M_{I}(s)$

$$M_{0}(s) = \Omega_{0}(s) \left[\alpha_{0} + \beta_{0}s + \gamma_{0}s^{2} + \frac{s^{2}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta_{0}^{0}(s') \hat{M}_{0}(s')}{|\Omega_{0}(s')| (s' - s - i\varepsilon)} \right]$$

Omnès function
Similarly for M₁ and M₂

- Inputs needed for the $\pi\pi$ phase shifts ${\cal S}^I_\ell$
- $\hat{M}_{I}(s)$ contain the left-hand cut. They are obtained from angular averages over the $M_{I}(s) \implies Coupled$ equations
- Four subtraction constants to be fixed: α_0 , β_0 , γ_0 and one more in M_1 (β_1)
- Solve dispersion relations numerically by an iterative procedure

Emilie Passemar

2.4 Subtraction constants

KLOE data in physical region

Ambrosino et al'08

One loop ChPT in the vicinity of Adler zero

Emilie Passemar

Emilie Passemar

3. Results

3.1 Result for M(s,t,u) along s=u

From the matching to one loop ChPT (→ referred as matching in the following)

22

- 3.1 Result for M(s,t,u) along s=u
- From the matching to one loop ChPT

3.2 Dalitz plot for $\eta \rightarrow \pi^+ \pi^- \pi^0$

Dalitz plot distribution measured by KLOE

24

3.3 Dalitz plot: Comparison with KLOE

3.3 Dalitz plot: Comparison with KLOE

3.3 Dalitz plot: Comparison with KLOE

3.5 Extraction of Q and comparison with other results

3.6 Results for the neutral mode

- Compute the amplitude for the neutral mode for which there are much more experimental results
- Amplitude: $\overline{A}(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)$
- NB: Fit still performed to the charged Dalitz plot distribution
- Dalit plot parametrization: $\Gamma = N(1+2\alpha Z)$ with $Z = X^2 + Y^2$

• Extraction of α

4. Conclusion and outlook

4.1 Conclusion

- $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays represent a source of information on the quark mass ratio Q
- A reliable extraction of Q requires having the strong rescattering effects in the final state under control
- This is possible thanks to dispersion relations
 need to determine unknown subtraction constants
- Use of experimental measurements of the Dalitz plot distributions to determine the subtraction constants and reduce the uncertainties in the dispersive analysis

4.1 Conclusion

- Analysis presented with subtraction constants from
 - > Matching to one loop ChPT $\implies Q = 22.74^{+0.68}_{-0.67}$

Disagreement with the observed Dalitz plot distribution from KLOE

- Fit to the Dalitz plot distribution of the charge mode (*KLOE*) and ChPT $\implies Q = 21.31^{+0.59}_{-0.50}$
- Experimental fit removes the discrepancy on the sign of α in the neutral mode but the value of α is only in marginal agreement with the experimental ones

4.2 Outlook

- Try to understand the discrepancy between the two results
 - use the experimental results on the Dalitz plot distribution from the neutral mode to fix the subtraction constants
 - > More data on $\eta \rightarrow \pi^+ \pi^- \pi^0$ in particular on the Dalitz plot distribution needed!
- Matching to NNLO ChPT

 \rightarrow Constraints from experiment: possible determination of C_i

- Investigate the differences with the analysis of Kampf et al.
- Include electromagnetic corrections in the dispersive analysis

Emilie Passemar

5. Back-up

Light quark masses from Lattice QCD using Q

• Use Q and lattice determinations of m_s and \hat{m}

 \implies Light quark masses: m_u , m_d

$$m_u = \hat{m} - \frac{m_s^2 - \hat{m}^2}{4\hat{m}Q^2}$$
 and $m_d = \hat{m} + \frac{m_s^2 - \hat{m}^2}{4\hat{m}Q^2}$

• For instance

>
$$m_s$$
 and \hat{m} from BMW - $\begin{bmatrix} m_s = 95.5 \pm 1.5 \pm 1.1 \\ \hat{m} = 3.469 \pm 0.048 \pm 0.0047 & Durr et al'10 \end{bmatrix}$

 \triangleright Q from the fit: $Q = 21.31^{+0.59}_{-0.50}$

 $\implies m_u = (2.02 \pm 0.14) \text{ MeV}$ and $m_d = (4.91 \pm 0.11) \text{ MeV}$

Emilie Passemar

Determination of the light quark masses

• Fundamental unknowns of the QCD Lagrangian

$$\mathcal{L}_{QCD} = -\frac{1}{4} G_a^{\mu\nu} G_{\mu\nu}^a + \sum_{k=1}^{N_F} \overline{q}_k \left(i \gamma^{\mu} D_{\mu} - m_k \right) q_k$$

- High precision physics at low energy as a key of new physics?
 m_d m_u: small isospin breaking corrections but to be taken into account for high precision physics
- Different approaches:
 - ► Effective field theory → ChPT $\eta \to \pi^+ \pi^- \pi^0 \text{ decays, meson mass splitting}$
 - Numerical simulations on the lattice Hadron spectrum
 - Sum-rules

Hadronic τ decays

Emilie Passemar

Dalitz plot: Comparison with KLOE

• Error analysis

Matching	$Q(\pi^+\pi^-\pi^0)$	Fit	$Q(\pi^+\pi^-\pi^0)$
Г	\pm 0.31	Г	\pm 0.29
γ_{0}	\pm 0.38	stat. KLOE	\pm 0.091
β_1	\pm 0.36	syst. KLOE	+0.45 -0.30
L ₃	+0.025 -0.023	$\mathcal N$ KLOE	+0.030 -0.029
$\delta_l(s)$	+0.18 -0.15	L ₃	+0.21 -0.25
inelasticity	\pm 0.2	$\delta_l(\mathbf{S})$	+0.041 -0.053
cut-off	\pm 0.09	W _A	$^{+0.000}_{-0.033}$
total uncertainty	+0.68 -0.67	total uncertainty	+0.59 -0.50

Emilie Passemar

Light quark masses

Emilie Passemar

Meson masses

• From LO ChPT without e.m effects:

$$egin{aligned} M_{\pi^+}^2 &= (m_{ extsf{u}} + m_{ extsf{d}}) \, B_0 + O(m^2) \ M_{K^+}^2 &= (m_{ extsf{u}} + m_{ extsf{s}}) \, B_0 + O(m^2) \ M_{K^0}^2 &= (m_{ extsf{d}} + m_{ extsf{s}}) \, B_0 + O(m^2) \end{aligned}$$

Electromagnetic effects: Dashen's theorem

$$\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)_{em}-\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)_{em}=O\left(e^{2}m\right)$$
 Dashen'69

 $\begin{array}{c} \hline \\ \hline \\ \hline \\ \\ \end{array} \begin{array}{c} & \searrow \\ M_{\pi^0}^2 = B_0 \left(m_u + m_d \right), \ M_{\pi^+}^2 = B_0 \left(m_u + m_d \right) + \Delta_{em} \\ \\ & \searrow \\ M_{K^0}^2 = B_0 \left(m_d + m_s \right), \ M_{K^+}^2 = B_0 \left(m_u + m_s \right) + \Delta_{em} \\ \\ & 2 \text{ unknowns } B_0 \text{ and } \Delta_{em} \end{array}$

Emilie Passemar

Quark mass ratios $\frac{m_u}{m_d} \stackrel{\text{LO}}{=} \frac{M_{K^+}^2 - M_{K^0}^2 + 2M_{\pi^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 0.56 ,$

$$\frac{m_s}{m_d} \stackrel{\text{\tiny LO}}{=} \frac{M_{K^+}^2 + M_{K^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 20.2$$

Emilie Passemar

•
$$Q^2 = \frac{M_K^2}{M_\pi^2} \frac{M_K^2 - M_\pi^2}{M_{K^0}^2 - M_{K^+}^2} \Big[1 + O(m_q^2) \Big]$$
 is only valid for e=0

• Including the electromagnetic corrections, one has

$$\mathsf{Q}_{D}^{2} \equiv \frac{(M_{K^{0}}^{2} + M_{K^{+}}^{2} - M_{\pi^{+}}^{2} + M_{\pi^{0}}^{2})(M_{K^{0}}^{2} + M_{K^{+}}^{2} - M_{\pi^{+}}^{2} - M_{\pi^{0}}^{2})}{4M_{\pi^{0}}^{2}(M_{K^{0}}^{2} - M_{K^{+}}^{2} + M_{\pi^{+}}^{2} - M_{\pi^{0}}^{2})}$$

$$\implies Q_D = 24.2$$

• Corrections to the Dashen's theorem

 \longrightarrow The corrections can be large due to e^2m_s corrections:

$$\left(M_{K^{+}}^{2} - M_{K^{0}}^{2}\right)_{\mathrm{em}} - \left(M_{\pi^{+}}^{2} - M_{\pi^{0}}^{2}\right)_{\mathrm{em}} = e^{2}M_{K}^{2}\left(A_{1} + A_{2} + A_{3}\right) + O\left(e^{2}M_{\pi}^{2}\right)$$

Urech'98, Ananthanarayan & Moussallam'04

Emilie Passemar

Corrections to Dashen's theorem

Dashen's Theorem

$$\left(M_{K^{+}}^{2} - M_{K^{0}}^{2}\right)_{\text{em}} = \left(M_{\pi^{+}}^{2} - M_{\pi^{0}}^{2}\right)_{\text{em}} \implies \left(M_{K^{+}}^{2} - M_{K^{0}}^{2}\right)_{\text{em}} = 1.3 \text{ MeV}$$

• With higher order corrections

• Lattice :
$$(M_{K^+} - M_{K^0})_{em} = 1.9 \text{ MeV}, Q = 22.8$$

• ENJL model:
$$(M_{K^+} - M_{K^0})_{em} = 2.3 \text{ MeV}, Q = 22$$

Bijnens & Prades'97

Donoghue & Perez'97

- VMD: $(M_{K^+} M_{K^0})_{em} = 2.6 \text{ MeV}, Q = 21.5$
- Sum Rules: $(M_{K^+} M_{K^0})_{em} = 3.2 \text{ MeV}, Q = 20.7$

Anant & Moussallam'04

Update \longrightarrow $Q = 20.7 \pm 1.2$ Kastner & Neufeld'07

Emilie Passemar

Lattice QCD

• Compute the quark masses from first principles

 $\rightarrow \mathcal{L}_{OCD}$ on the lattice

- QCD Lagrangian as input
- Calculate the spectrum of the low-lying states for different quark masses
- Tune the values of the quark masses such that the QCD spectrum is reproduced
- Set the scale by adding an external input or extract quark mass ratios
- NB: computation in the isospin limit: $m_u = m_d = \hat{m}_d$ $\frac{m_u + m_d}{2}$

Emilie Passemar

Q from	\hat{m}, m_s from	Q	\hat{m}	m_s	m_u	m_d
matching	FLAG	22.74	3.4	95	2.12 ± 0.62	4.68 ± 0.38
matching	RBC/UKQCD	22.74	3.59	96.2	2.35 ± 0.30	4.83 ± 0.17
matching	BMW	22.74	3.469	95.5	2.20 ± 0.13	4.74 ± 0.10
fit	FLAG	21.31	3.4	95	1.94 ± 0.65	4.86 ± 0.39
fit	RBC/UKQCD	21.31	3.59	96.2	2.17 ± 0.31	5.01 ± 0.17
fit	BMW	21.31	3.469	95.5	2.02 ± 0.14	4.91 ± 0.11

Main result: m_s and \hat{m} from BMW + Q from fit $m_u = (2.02 \pm 0.14)$ MeV and $m_d = (4.91 \pm 0.11)$ MeV

 $m_{\mu} = 0$ excluded!

Emilie Passemar

Results for the neutral channel

- Amplitude: $\overline{A}(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)$
- Dalit plot parametrization: $\Gamma = N(1+2\alpha Z)$ with $Z = X^2 + Y^2$

Results for the neutral channel

- Amplitude: $\overline{A}(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)$
- Dalit plot parametrization: $\Gamma = N(1+2\alpha Z)$ with $Z = X^2 + Y^2$

Results for the neutral channel

- Amplitude: $\overline{A}(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)$
- Dalit plot parametrization: $\Gamma = N(1+2\alpha Z)$ with $Z = X^2 + Y^2$

	$Q(\pi^+\pi^-\pi^0)$	$Q(3\pi^0)$	r	α
Г	\pm 0.31	\pm 0.31		
γ_0	\pm 0.38	\pm 0.36	\pm 0.0069	\pm 0.0096
eta_{1}	\pm 0.36	\pm 0.35	\pm 0.0039	\pm 0.0026
L ₃	+0.025 -0.023	+0.036 -0.033	\pm 0.0026	\pm 0.0009
$\delta_l(s)$	+0.18 -0.15	+0.17 -0.13	+0.0027 -0.0032	\pm 0.0040
inelasticity	\pm 0.2	\pm 0.2	—	—
cut-off	\pm 0.09	\pm 0.09	\pm 0.002	\pm 0.0026
total uncertainty	+0.68 -0.67	+0.65 -0.64	+0.0090 -0.0092	± 0.011

Emilie Passemar

	$Q(\pi^+\pi^-\pi^0)$	$Q(3\pi^0)$	r	α
Г	\pm 0.29	\pm 0.29		_
stat. KLOE	\pm 0.091	\pm 0.086	\pm 0.0068	\pm 0.0034
syst. KLOE	+0.45 -0.30	+0.42 -0.28	+0.0078 -0.0125	$+0.0067 \\ -0.0094$
${\cal N}$ KLOE	+0.030 -0.029	+0.030 -0.029	+0.0001 -0.0001	+0.0016 -0.0012
L ₃	+0.21 -0.25	+0.22 -0.26	+0.0020 -0.0021	+0.0018 -0.0015
$\delta_l(\mathbf{S})$	+0.041 -0.053	+0.034 -0.048	+0.0014 -0.0018	+0.0020 -0.0017
W _A	$^{+0.000}_{-0.033}$	$^{+0.000}_{-0.032}$	+0.0015 -0.0013	$^{+0.0013}_{-0.0008}$
total uncertainty	+0.59 -0.50	$^{+0.56}_{-0.50}$	+0.011 -0.015	+0.0083 -0.0104

Emilie Passemar

Method: Representation of the amplitude

- Knowing the discontinuity of $M_I \rightarrow$ write a dispersion relation for it
- Cauchy Theorem and Schwarz reflection principle

$$\implies M_{I}(s) = \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{disc [M_{I}(s')]}{s' - s - i\varepsilon} ds'$$

 M_I can be reconstructed everywhere from the knowledge of $disc[M_I(s)]$

• If M_I doesn't converge fast enought for $|s| \rightarrow \infty \implies$ subtract the dispersion relation

$$M_{I}(s) = P_{n-1}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{n}} \frac{disc[M_{I}(s')]}{(s'-s-i\varepsilon)} P_{n-1}(s) \text{ polynomial}$$

Emilie Passemar

Hat functions

• Discontinuity of M_I : by definition $disc[M_I(s)] = disc[f_\ell^I(s)]$

 $\implies f_{\ell}^{I}(s) = M_{I}(s) + \hat{M}_{I}(s)$

with $\hat{M}_{I}(s)$ real on the right-hand cut

- The left-hand cut is contained in $\hat{M}_{I}(s)$
- Determination of $\hat{M}_{I}(s)$: subtract M_{I} from the partial wave projection of M(s,t,u) $M(s,t,u) = M_{0}(s) + (s-u)M_{1}(t) + ...$
- $\hat{M}_{I}(s)$ singularities in the t and u channels, depend on the other M_{I} Angular averages of the other functions \implies Coupled equations

Emilie Passemar

Hat functions

• Ex:
$$\hat{M}_0(s) = \frac{2}{3} \langle M_0 \rangle + 2(s-s_0) \langle M_1 \rangle + \frac{20}{9} \langle M_2 \rangle + \frac{2}{3} \kappa(s) \langle zM_1 \rangle$$

where
$$\langle z^n M_I \rangle (s) = \frac{1}{2} \int_{-1}^{1} dz \ z^n M_I (t(s,z)),$$

 $z = \cos \theta$ scattering angle

Non trivial angular averages index in the integration path to avoid crossing cuts Anisovich & Anselm'66

Hat functions

• Ex:
$$\hat{M}_0(s) = \frac{2}{3} \langle M_0 \rangle + 2(s - s_0) \langle M_1 \rangle + \frac{20}{9} \langle M_2 \rangle + \frac{2}{3} \kappa(s) \langle zM_1 \rangle$$

where
$$\langle z^n M_I \rangle (s) = \frac{1}{2} \int_{-1}^{1} dz \ z^n M_I (t(s,z)),$$

 $z = \cos \theta$ scattering angle

Non trivial angular averages index in the integration path to avoid crossing cuts Anisovich & Anselm'66

Dispersion Relations for the M_I(s)

Elastic Unitarity

 $\ell = 1$ for I = 1, $\ell = 0$ otherwise]

$$\implies disc \left[M_{I} \right] = disc \left[f_{\ell}^{I}(s) \right] = \theta \left(s - 4M_{\pi}^{2} \right) \left[M_{I}(s) + \hat{M}_{I}(s) \right] \sin \delta_{\ell}^{I}(s) e^{-i\delta_{\ell}^{I}(s)}$$

 δ^I_ℓ phase of the partial wave $f^I_\ell(s)$

 $\pi\pi$ phase shift

 \Rightarrow Watson theorem: elastic $\pi\pi$ scattering phase shifts

Solution: Inhommogeneous Omnès problem

$$\begin{bmatrix} M_0(s) = \Omega_0(s) \left(\alpha_0 + \beta_0 s + \gamma_0 s^2 + \frac{s^3}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^3} \frac{\sin \delta_0^0(s') \hat{M}_0(s')}{|\Omega_0(s')| (s' - s - i\varepsilon)} \right) \end{bmatrix}$$

Omnès function
Similarly for M₁ and M₂
$$\begin{bmatrix} \Omega_I(s) = \exp\left(\frac{s}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\delta_\ell^I(s')}{s'(s' - s - i\varepsilon)}\right) \end{bmatrix}$$

Emilie Passemar