Quarkonium Production

Christopher Powell for the STAR Collaboration

Lawrence Berkeley National Laboratory / University of Cape Town

International Europhysics Conference on High Energy Physics Grenoble, France, July 21 – 27, 2011

Christopher Powell

Introduction

Heavy quarks are created in the initial hard scattering \rightarrow exposed to the evolution of the system.

Quarkonium are used to probe the properties of the hot dense matter created at RHIC.

Expect suppression in a deconfined medium.

Similar suppression at SPS and RHIC **Regeneration from sea of quarks?**

<u>A+A collisions:</u>

- Modification of production due to QGP (e.g. color-screening, regeneration);
- Initial-state gluon multi-scattering;
- Escape from fireball at high- $p_{_{T}}$;
- Feed down from excited states;

 \rightarrow Measure p_T spectra, elliptic flow (v_2), R_{AA}

EPS HEP Conference, July 21-27, 2011 Grenoble, Rhône-Alpes, France

2/12

Previous Measurements

Nuclear modification factor:

$$R_{\rm AA} = \frac{\left. {\rm d}N/{\rm d}y \right|_{\rm A+A}}{N_{\rm coll} \cdot {\rm d}N/{\rm d}y \right|_{\rm p+p}}$$

Look at high- $p_T J/\psi$ to understand system size and formation time effects

No suppression in Cu+Cu 200 GeV at high- $p_{_{\rm T}}$

\rightarrow leakage / $p_{_{\rm T}}$ broadening

Data agrees with 2 Component model (dissociation, regeneration, formation time effects)

STAR Experiment

J/ψ, $Υ → e^+ e^-$ (BR = 5.9%, 2.4%)

Large Acceptance: $|\eta| < 1$, 0 < φ < 2π

Time Projection Chamber:Tracking $\rightarrow p_T, \eta, \varphi$ dE/dx \rightarrow PID

 $\begin{array}{ll} \hline \textbf{Time Of Flight:} \\ Timing res. < 100 \text{ ps} \\ 1/\beta & \rightarrow \text{PID} \end{array}$

<u>Barrel Electromagnetic</u> <u>Calorimeter:</u>

Tower $\Delta \eta \ge \Delta \phi = 0.05 \ge 0.05$ Energy $\rightarrow E/p \sim 1$ (electrons)

Christopher Powell

J/ψ Spectra in p+p 200 GeV

· CEM can describe J/ ψ in p+p 200 GeV data

B \rightarrow J/ ψ (incl.) feed-down

No significant beam energy dependence Constrain feed-down contribution: $(B \rightarrow J/\psi) / (incl. J/\psi) \sim 10 - 25 \%$

STAR Christopher Powell

Signal in Au+Au 200 GeV

Clean signal with high significance for J/ψ and Y. First Y measurement in heavy ion collisions!

J/ψ Spectra in Au+Au

Transverse momentum dependence of J/ψ

Hydro-inspired blast wave fit to data:

· Softer spectra than light hadron prediction → low- p_{T} regeneration

 J/ψ range extended to low and high $p_{_{\rm T}}$ from 0 - 10 GeV/c

hristopher Powell

Agreement between STAR (|y| < 1) and PHENIX (|y| < 0.35)

$J/\psi R_{AA}$ in Au+Au

STAR Christopher Powell

$J/\psi v_2$ in Au+Au

A new probe of charmonium production and thermalization from azimuthal anisotropy: J/ψ elliptic flow v_2

Significant flow of light hadrons and φ (ss) meson observed.

$J/\psi \ v_2 \ is$ consistent with zero!

First hadron that does <u>not</u> flow.

Disfavor regeneration from thermalized charm quarks in 20 - 60 % central collisions.

EPS HEP Conference, July 21-27, 2011 Grenoble, Rhône-Alpes, France

10/12

$\Upsilon(1S+2S+3S)$ R_{AA} in Au+Au

Cleaner probe of deconfinement (negligible regeneration)

Suppression of $\Upsilon(1S+2S+3S)$ in 0-10%, $R_{AA} = 0.34 \pm 0.17$.

More statistics to come – reduce uncertainty by a factor of 2

Summary

In p+p collisions:

 $J/\psi p_T$ spectrum extended to high p_T .

B feed-down to J/ ψ measured ~ 10 – 25 %.

In heavy ion collisions:

Suppression of J/ ψ and Y in central collisions. No suppression for high-pT J/ ψ in Cu+Cu and peripheral Au+Au

 \rightarrow formation time / system size effects.

$J/\psi v_2$ is consistent with zero

→ disfavor regeneration of thermalized charm quarks.

 $\rightarrow J/\psi$ is the only meson that does not flow!

Quarkonium production is very exciting !

