

Electroweak boson production in the forward region with LHCb

Tara Shears, for the LHCb collaboration

1. Introduction LHCb 2. W→μ, Z→μμ Motivation 3. Z→ττ Motivation 4. Outlook Dataset	
--	--

- Introduction
- W $\rightarrow \mu\nu$, Z $\rightarrow \mu\mu$ production measurements
- $Z \rightarrow \tau \tau$ (eµ, µµ) production measurements
- Outlook
- Conclusions

1. Introduction

- 2. W→μ, Z→μμ
- 3. Z→ττ

4. Outlook

5. Conclusions

LHCb Motivation Dataset

Fully instrumented within $1.9 \le \eta \le 4.9$ Trigger: $p_{\mu} > 3$ GeV, $pt_{\mu} > 0.5$ GeV, $m_{\mu\mu} > 2.5$ GeV

8% of Z within LHCb acceptance

17% (16%) of W⁺ (W⁻) within LHCb acceptance

1. IntroductionLHCb2. $W \rightarrow \mu$, $Z \rightarrow \mu \mu$ Motivation3. $Z \rightarrow \tau \tau$ Motivation4. OutlookDataset5. ConclusionsDataset

X, Q² explored by previous experimental data

1. Introduction

- 2. W $\rightarrow \mu$, Z $\rightarrow \mu\mu$ 3. Z $\rightarrow \tau\tau$ 4. Outlook
- 5. Conclusions

LHCb Motivation Dataset

Cross-sections known to NNLO PDF uncertainty dominates.

W,Z: Known to ~2% at y ~1.5-2, 6-8% at y~5

Forward measurements can test SM, and provide data to constrain partons.

1. Introduction LHCb 2. W→μ, Z→μμ Motivation 3. Z→ττ Dataset 4. Outlook Dataset 5. Conclusions

2010: 37.7 pb⁻¹ data recorded

2011:

410 pb⁻¹ recorded so far (210 pb⁻¹ analysed here)

2 W_su 7_suu Wselection	
2. W→μ, Z→μμ W selection 3. Z→ττ Efficiencies 4. Outlook Systematic errors 5. Conclusions Results	

Definition of measured cross-sections:

$$\sigma(Z \rightarrow \mu \mu : 2 < \eta_{\mu} < 4.5, P_{T\mu} > 20 GeV, 60 < M_{\mu\mu} < 120 GeV)$$

(as function of Z rapidity, $Z P_T$)

$$\sigma(W \rightarrow \mu\nu: 2 < \eta_{\mu} < 4.5, P_{T\mu} > 20 GeV)$$

(as function of muon pseudorapidity)

1.	Introduction
2	. W →μ, Ζ→μμ
3.	Ζ→ττ
4.	Outlook
5.	Conclusions

Z selection W selection Efficiencies Systematic errors Results

Trigger: Single μ , $p_T > 10 \text{ GeV}$ Muon: Good track quality $p_T > 20 \text{ GeV}$ $2.0 < \eta < 4.5$ Z: $60 < M(\mu\mu) < 120 \text{ GeV}$

1966 candidates Backgrounds: $Z \rightarrow \tau\tau \quad 0.6 \pm 0.2$ Heavy flavour: 4.3 ± 3 Mis-id: 1 ± 1

Z selection W selection Efficiencies Systematic errors Results

Trigger: Single μ , $p_T > 10$ GeV

Muon:

Good track quality $p_T > 20 \text{ GeV}$ $2.0 < \eta < 4.5$ Unbiased impact parameter < 40 µm $\Sigma(p_T + E(\gamma))$ in $R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} = 0.5$ cone around $\mu < 2 \text{ GeV}$ E/p < 0.04No other μ with $P_T > 5 \text{ GeV}$

> Efficiency 45%-80% Estimated using Z data η dependent

1.	Introduction
2	. W →μ, Z →μμ
3.	Ζ→ττ
4.	Outlook
5.	Conclusions

Z selection W selection Efficiencies Systematic errors Results

N_{W+} = 15 608 N_{W-} = 12 301

Background sources: $Z \rightarrow \mu\mu (1 \ \mu \text{ in acceptance})$ $\gamma^* \rightarrow \mu\mu$ $Z \rightarrow \tau\tau$ $W \rightarrow \tau \nu$ Punch-through Heavy flavour Decay in flight

Data Simulation Data + simulation Fit muon p_T spectrum in data to expected shapes for signal and background, extract N_{bkg^+} , N_{bkg^-}

Z selection W selection Efficiencies Systematic errors Results

Z selection W selection Efficiencies Systematic errors Results

$$\varepsilon_{Z} = A_{Z} \varepsilon_{Z}^{track} \varepsilon_{Z}^{muon} \varepsilon_{Z}^{trig} \varepsilon_{Z}^{selection}$$

$$\varepsilon_{W} = A_{W} \varepsilon_{W}^{track} \varepsilon_{W}^{muon} \varepsilon_{W}^{trig} \varepsilon_{W}^{selection}$$

 A_W (A_Z) from MC, consistent with 1.0.

Determine from data (Z events)

Tag: 1 identified muon

Probe: 1 muon stub + TT hit

Bin efficiencies in lepton η , calculate for each event. $\epsilon(W+,W-) \sim 79\%$ $\epsilon(Z) \sim 81.5\%$

 $\varepsilon_{Z} = A_{Z} \varepsilon_{Z}^{track} \varepsilon_{Z}^{muon} \varepsilon_{Z}^{trig} \varepsilon_{Z}^{selection}$ $\varepsilon_{W} = A_{W} \varepsilon_{W}^{track} \varepsilon_{W}^{muon} \varepsilon_{W}^{trig} \varepsilon_{W}^{selection}$

Determine from data (Z events)

Tag: 1 identified muon

Probe: 1 track

Bin efficiencies in lepton η , calculate for each event. $\epsilon(W+,W-) \sim 99\%$ $\epsilon(Z) \sim 98\%$

1.	Introduction
2	. W →μ, Z→μμ
3.	Ζ→ττ
4.	Outlook
5.	Conclusions

Z selection W selection Efficiencies Systematic errors Results

$$\varepsilon_{Z} = A_{Z} \varepsilon_{Z}^{track} \varepsilon_{Z}^{muon} \varepsilon_{Z}^{trig} \varepsilon_{Z}^{selection}$$
$$\varepsilon_{W} = A_{W} \varepsilon_{W}^{track} \varepsilon_{W}^{muon} \varepsilon_{W}^{trig} \varepsilon_{W}^{selection}$$

Determine from data (Z events)

Tag: 1 identified muon having fired the single muon trigger

Probe: 1 identified muon

+ Hit multiplicity threshold: estimate from data.

Bin efficiencies in lepton η , calculate for each event. $\epsilon(W+,W-) \sim 80\%$ $\epsilon(Z) \sim 95\%$ $\epsilon(mult) \sim 95\%$

Z selection W selection Efficiencies Systematic errors Results

	Δσ(W+) [%]	Δσ(W-) [%]	Δσ(Ζ) [%]
Background	± 1.6	± 1.6	± 0.4
Shape (fit)	± 1.9	± 1.7	n/a
Efficiency	± 2.0	± 1.8	± 5.1
FSR correction	± 0.2	± 0.2	± 0.3
Sys. error	± 3.5	± 3.2	± 5.1
Luminosity	± 3.5	± 3.5	± 3.5
Stat. error	± 0.9	± 1.1	± 2.1

Z selection W selection Efficiencies Systematic errors Results

(FSR corrected, using HORACE)

1. Introduction	Z selection
2. W→u. Z→uu	W selection
	Efficiencies
1 Outlook	Systematic errors
4. Outlook	Results
5. Conclusions	Roodito

ττ selection Efficiencies Results

Definition of measured cross-section:

 $\sigma(Z \rightarrow \tau\tau: 2 < \eta_\tau < 4.5, P_{T\tau} > 20 GeV, 60 < M_{\tau\tau} < 120 GeV)$

ττ selection Efficiencies Results

Final states considered: $e\mu$, $\mu\mu$

- μ: $2 < \eta_{\mu} < 4.5$ E/p < 0.2
- $\begin{array}{l} \textbf{e}: \ 2 < \eta_e < 4.5 \\ E_{ECAL}/p > 0.1, \ E_{HCAL}/p < 0.05 \\ E_{PRS} > 0.05 \ GeV \end{array}$

Distinguish from backgrounds by Isolation

$$I = \min\left(\frac{p_{\mu,e} - \sum p_{track}}{p_{\mu,e} + \sum p_{track}}\right)$$

ττ selection Efficiencies Results

Final states considered: $e\mu$, $\mu\mu$

- μ: $2 < \eta_{\mu} < 4.5$ E/p < 0.2
- $\begin{array}{l} \textbf{e}: \ 2 < \eta_{e} < 4.5 \\ E_{ECAL}/p > 0.1, \ E_{HCAL}/p < 0.05 \\ E_{PRS} > 0.05 \ GeV \end{array}$

Distinguish from backgrounds by Impact parameter sum $\Delta \varphi$

 P_{T} asymmetry

$$A_{PT} = \left(\frac{P_T^{\mu 1} - P_T^{\mu 2}}{P_T^{\mu 1} + P_T^{\mu 2}}\right)$$

ττ selection Efficiencies Results

Trigger: Single μ , $p_T > 10$ GeV

Muon: $P_T^{\mu} > 20 \text{ GeV}$

Electron: $P_T^e > 5 \text{ GeV}$

Z: $\Delta \phi$ (e μ) > 2.7 radians Isolation / > 0.8.

81 candidates Backgrounds: QCD: 9.5 ± 3 EWK: 3 ± 1.2

ττ selection Efficiencies Results

Trigger: Single μ , $p_T > 10$ GeV

Muon: $P_T^{\mu 1} > 20 \text{ GeV},$ $P_T^{\mu 2} > 5 \text{ GeV}.$

33 candidates Backgrounds: QCD: 1.6 ± 1.3 EWK: 5.5 ± 1.8 ττ selection Efficiencies Results

$$\varepsilon = A \ \varepsilon_{\mu}^{track} \varepsilon_{e}^{track} \varepsilon^{muon} \varepsilon^{electron} \varepsilon^{trig} \varepsilon^{selection}$$

A (MC)

$$\epsilon^{trig}$$
 (data): tag-and-probe $Z \rightarrow \mu\mu$
 ϵ^{track}_{μ} (data): tag-and-probe $Z \rightarrow \mu\mu$
 ϵ^{track}_{e} (MC) scaled to ϵ^{track}_{μ}
 ϵ^{μ} (data): tag-and-probe $Z \rightarrow \mu\mu$
 ϵ^{e} (data): tag-and-probe $Z \rightarrow ee$
 ϵ^{sel} (MC): systematic from MC/data
comparison in $Z \rightarrow \mu\mu$ events.

ττ selection Efficiencies Results

	Δσ(eμ) [%]	Δσ(μμ) [%]
Background	± 5	± 7
Efficiency	± 8	± 9
Acceptance	± 5	± 2
Sys. error	± 10	± 11
Luminosity	± 3.5	± 3.5
Stat. error	± 12	± 17

ττ selection Efficiencies Results

30

Measurements of W, Z production in the forward region presented

W→μν, Z→μμ:

In agreement with NNLO predictions Data-driven method, precision will improve with 2011 data

Ζ→ττ:

First LHCb measurements presented Production in agreement with NNLO predictions.

a)

3

4

η

2

	$e\mu$		μ	μ
	2010 data	2011 data	2010 data	2011 data
Number of events	10	71	4	29
Estimated background	1.9 ± 0.5	10.6 ± 2.7	1.1 ± 0.3	6.1 ± 2.0
$\epsilon_{trigger}$	0.73 ± 0.01	0.78 ± 0.01	0.81 ± 0.01	0.86 ± 0.01
ϵ^{μ}_{track}	0.84 ± 0.02		0.84 ± 0.02	
ϵ^{e}_{track}	0.80 ± 0.03		-	-
ϵ^{μ}_{id}	0.991 ± 0.002		0.991 ± 0.002	
ϵ^{e}_{id}	0.962 ± 0.01		-	-
ϵ_{sel}	0.46 ± 0.03		0.172 ± 0.014	
e	0.215 ± 0.017	0.230 ± 0.019	0.097 ± 0.009	0.103 ± 0.010
Acceptance	0.249 ± 0.012		0.386 ± 0.009	
Luminosity (pb^{-1})	37.5 ± 1.3	210.4 ± 8.4	37.5 ± 1.3	208.9 ± 7.3
Branching Ratio	0.062		0.030	
FSR Correction	0.7 ± 0.1			
Cross-section (pb)	$79 \pm 9 \pm 8 \pm 3$		89 ± 15	$\pm 10 \pm 3$