Detector Requirements and R&D Challenges at CLIC

EPS HEP 2011, Grenoble July 22, 2011

Christian Grefe (CERN, University of Bonn)

On behalf of the CLIC Physics and Detector Study www.cern.ch/LCD

- Physics driven detector requirements:
- Jet energy resolution: $\sigma(E)/E_{jet} \approx 3\%$

- Distinguish W, Z and H in hadronic decays
- Use particle flow (highly granular calorimeters)

- Higgs mass and SUSY endpoint measurements (sleptons)
- Impact parameter resolution: $\sigma_{IP} \approx \left(5 \oplus \frac{15}{p_{L}} \right) \mu m$
 - Excellent flavor tagging: b & c identification and separation
 - Small pixel sizes
 - Low material budget to avoid multiple scattering

- Future $e^+ e^-$ linear collider with E_{cms} of 3 TeV (baseline design)
- Can be built in a staged approach to cover lower energies
- Total luminosity of ~ 6-10³⁴ cm⁻²s⁻¹

- Future $e^+ e^-$ linear collider with E_{cms} of 3 TeV (baseline design)
- Can be built in a staged approach to cover lower energies
- Total luminosity of ~ 6-10³⁴ cm⁻²s⁻¹

• Beam split into trains (50 Hz)

 \succ allows power pulsing \rightarrow less cooling required \rightarrow lower material budget

• Only 0.5 ns between bunches

- Very small beam sizes cause beamstrahlung
 - 1 nm vertical, 40 nm horizontal, 44 nm longitudinal
- ΔE/E = 29% @ 3 TeV
 - Coherent pairs (3.8×10⁸ / BX)
 - Incoherent pairs (3.0×10⁵ / BX)
 - $\gamma\gamma \rightarrow$ hadrons (3.2 / BX)

Beamstrahlung

Coherent e⁺ e⁻ pairs at low angles

- Crossing angle of 20 mrad
- Opening angle of outgoing beam pipe 10 mrad

Incoherent pairs extend to larger angles

- radially confined by solenoid field
- > drives radius for innermost vertex layer

- Very small beam sizes cause beamstrahlung
 - 1 nm vertical, 40 nm horizontal, 44 nm longitudinal
- ΔE/E = 29% @ 3 TeV
 - Coherent pairs (3.8×10⁸ / BX)
 - Incoherent pairs (3.0×10⁵ / BX)
 - $\gamma\gamma \rightarrow$ hadrons (3.2 / BX)

Beamstrahlung

 $\gamma\gamma \rightarrow hadrons$

- ~ 28 charged particles per BX
- ~ 50 GeV per BX (mostly forward)
- ~ 15 TeV deposited during one train
- less than one hard interaction per train
- timing information can help to reject background
- > sophisticated reconstruction required

- CLIC Conceptual Design Report will be published end of 2011
 - Volume 2: Physics and Detectors
 - Physics case
 - Detector design
 - Detector benchmark analysis

- CLIC Conceptual Design Report will be published end of 2011
 - Volume 2: Physics and Detectors
 - Physics case
 - Detector design
 - Detector benchmark analysis
- Use validated ILC detector concepts as starting point
 - Fulfill detector requirements
 - Need to be adapted for CLIC experimental conditions

- Vertex detector should be as close as possible to the IP (~1.5 cm @ ILC)
- Need to keep occupancy low in critical regions
 - Innermost vertex layer direct hits
 - Beam pipe creation of secondary particles

- As close as possible to the IP still need to avoid incoherent pairs
- Single point resolution: ~ 3 μ m, i.e. 20x20 μ m² analog pixels
- Very low material budget: 0.1 0.2% X₀ per detection layer
- Time stamping of 10 15 ns

- Systematic simulation study of particle flow performance at CLIC energies
- Need to increase HCal depth significantly to avoid leakage
 - Conclusion: ~7.5 λ_l needed in HCal (plus ~1 λ_l in ECal)
 - ILC detector concepts: $5.5 \lambda_{I}$ (ILD), $4.8 \lambda_{I}$ (SiD)

- Good energy resolution requires HCal to be inside coil
- Need dense material to keep coil size feasible
- Tungsten HCal seems suitable in simulation studies

Material	Fe	W
< λ _I [cm]	16.77	9.95
X ₀ [cm]	1.76	0.35
dE/dx[MeV/cm]	11.4	22.1
R _M [cm]	1.72	0.93

- Good energy resolution requires HCal to be inside coil
- Need dense material to keep coil size feasible
- Tungsten HCal seems suitable in simulation studies
- No large tungsten calorimeter existed so far
- Check GEANT4 simulations in test beam
 - shower shapes
 - time structure
- WHCal prototype in CALICE: use existing prototypes with tungsten absorber plates
- 2010 @ PS
 - up to 10 GeV with 30 layers instrumented
- 2011 @ SPS (finished last Sunday)
 - up to 300 GeV with 38 layers instrumented (~ 4.8 λ_{l}) + tail catcher

Material	Fe	W
λ _I [cm]	16.77	9.95
X ₀ [cm]	1.76	0.35
dE/dx [MeV/cm]	11.4	22.1
R _M [cm]	1.72	0.93

- Good energy resolution requires HCal to be inside coil
- Need dense material to keep coil size feasible
- Tungsten HCal seems suitable in simulation studies
- No large tungsten calorimeter existed so far
- Check GEANT4 simulations in test beam
 - shower shapes
 - time structure
- WHCal prototype in CALICE: use existing prototypes with tungsten absorber plates
- 2010 @ PS
 - up to 10 GeV with 30 layers instrumented
- 2011 @ SPS (finished last Sunday)
 - up to 300 GeV with 38 layers instrumented (~ 4.8 λ_l) + tail catcher

Christian Grele – EPS HEP, Grenoble – July 22, 2011	Christian Grefe –	EPS HEP.	Grenoble – Jul	v 22, 2011
---	-------------------	----------	----------------	------------

Material	Fe	W
λ _I [cm]	16.77	9.95
X ₀ [cm]	1.76	0.35
dE/dx[MeV/cm]	11.4	22.1
R _M [cm]	1.72	0.93

Page 17

- Several detector benchmark channels have been selected to map out the detector performance in real physics analysis
- All (jet) analysis have realistic background overlaid in full simulation & reco
- 3 TeV benchmark channels:
 - Light Higgs (m_H = 120 GeV), ee \rightarrow Hvv, H \rightarrow µµ and H \rightarrow bb
 - Momentum resolution, forward tracking performance, b-tagging
 - Heavy Higgs (m \approx 900GeV), H⁺H⁻, H⁰A⁰ \rightarrow tbtb, bbbb
 - b-tagging, multi-jet final state, m_{jj}
 - squark pair production (m \approx 1.1 TeV)
 - high energy jets, missing energy
 - slepton pair production (m \approx 1 TeV)
 - high momentum tracks, e and μ ID, missing energy
 - chargino and neutralino pair production (various masses)
 - multi-jet final state, missing energy, m_{jj}
- 500 GeV benchmark channel, similar to ILC LoI benchmark
 - top pair production
 - multi-jet final state, b-tagging

• Full simulation studies, i.e. CLIC CDR benchmark studies have to take into account realistic pile-up of $\gamma\gamma \rightarrow$ hadrons background

- Simulate signal and background samples individually
- Overlay background before digitization step and reconstruct together
- Define reasonable readout time windows for all sub detectors, i.e. 10 ns
- Overlay sufficient background events to fill time windows with realistic background levels

- Assuming 10ns readout time windows for tracker and calorimeter and overlay full bunch train structure within that time window
- Allow longer time window for HCal barrel because of large slow neutron contribution in hadronic showers in tungsten

- Assuming 1ns time resolution for calorimeter hits \rightarrow sub-ns resolution for clusters
- Calculate cluster time (and track propagation time) for reconstructed particles
- Remove out of time particles (cuts depending on θ on p_t)

- CLIC CDR will be published at the end of 2011
 - Volume 2: Physics and Detectors covers physics case, detector design and benchmark studies
- Focus will shift towards detector R&D after the CDR
- Large number of detector R&D opportunities at CLIC, even beyond the ongoing efforts for the ILC
 - Vertex detector:
 - high single point resolution and time stamping capability (~10ns)
 - low material budget \rightarrow use power pulsing to reduce cooling needs
 - Hadron Calorimeter:
 - dense absorber material, i.e. tungsten required to keep coil feasible and contain TeV energy jets
 - Coil:
 - large, high field solenoid required, needs improved sc cable design (not covered here)
 - Detector integration:
 - support of final quadrupole, needs to be isolated from vibrations (not covered here)
- Continue successful collaboration with the ILC R&D collaborations and ILC detector concepts

Backup Slides

0.1% X0 maximum per detection layer is desired, but more is not a show stopper

 Pad occupancy (percent of time voxels occupied) for full bunch train and 6*1 mm² pads at 40 MHz readout

 Systematic study of various absorber materials and sampling ratios vs. total HCal depth

Tungsten HCal Prototype

- Tungsten Timing Test Beam (T3B) set up behind the WHCal prototype
- Small number of scintillator tiles with very fast response
- Precise measurement of time structure of showers
- Data is well described by QGSP_BERT_HP

Impact of PFO selection on jet energy resolution

E_{jet} [GeV]	45	100	250	500
no cut	3.98 ± 0.05	3.15 ± 0.04	3.00 ± 0.04	3.26 ± 0.06
loose cut	4.40 ± 0.06	3.34 ± 0.04	3.08 ± 0.04	3.29 ± 0.06
default cut	5.15 ± 0.07	3.64 ± 0.05	3.17 ± 0.04	3.33 ± 0.06
tight cut	5.95 ± 0.08	3.99 ± 0.05	3.30 ± 0.04	3.37 ± 0.06

- Coil design is pushing technological limits
- Forces on sc cable is main challenge for the coil design (100bar pressure)
- Extrapolate ATLAS CS reinforced aluminum design
 - micro-alloy increases mechanical strength without degrading conductivity

Extrusion tests: Collaboration between KEK and CERN together with Swiss industry

- Final quadrupole as close as possible to the IP (luminosity)
- Very high stabilization requirements for QD0 at CLIC
 - Beam size: 1nm vertical, 40nm horizontal, 45nm longitudinal
 - Vertical position better than 0.15nm RMS for f > 4Hz
- Minimize vibrations
 - Use permanent magnets and warm magnets
 - Decouple from detector, support from tunnel instead
 - Passive high-mass low stiffness spring system to suppress high frequencies from ground

- Final quadrupole as close as possible to the IP (luminosity)
- Very high stabilization requirements for QD0 at CLIC
 - Beam size: 1nm vertical, 40nm horizontal, 45nm longitudinal
 - Vertical position better than 0.15nm RMS for f > 4Hz

