

2011 Europhysics Conference on High-Energy Physics, Grenoble

Measurements of Particle Production in pp-Collisions in the Forward Region at the LHC

Thomas Ruf 👰

for the LHCb collaboration

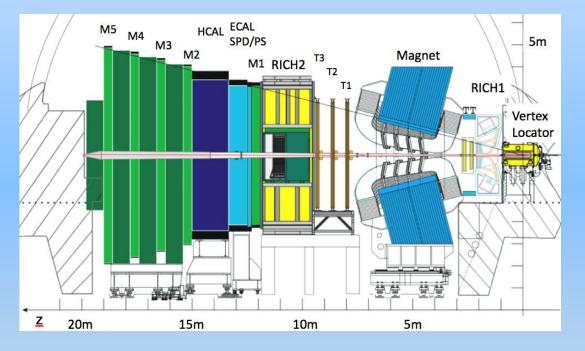
Introduction

Particle Multiplicities

Particle Production

Summary

Preliminary results New !


Final results

- Particle multiplicities and particle production measurements are important input for tuning of event generators and modelling of the underlying event
 - Good understanding of soft QCD processes is required for extracting many important measurements at the LHC
- The LHCb detector has a unique forward coverage in the pseudorapidity range of 2<η<5</p>
- The LHCb measurements are compared to different event generators and tunings

The LHCb Detector

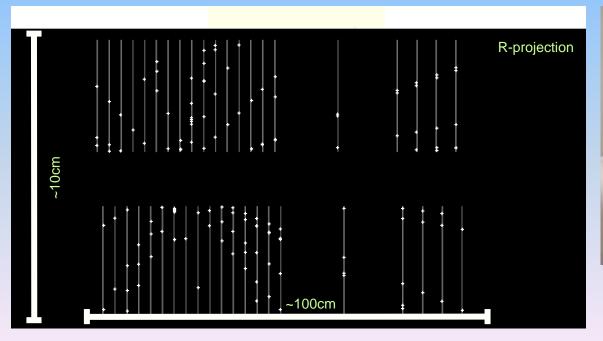
Single arm forward spectrometer made for high precision measurements of CP violation and rare decays in the beauty and charm sector

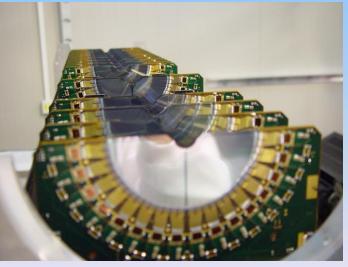
Excellent tracking and vertexing

 VELO, 8mm distance to beam, impact parameter resolution ~15μm (high p_T)

Unique Hadron PID

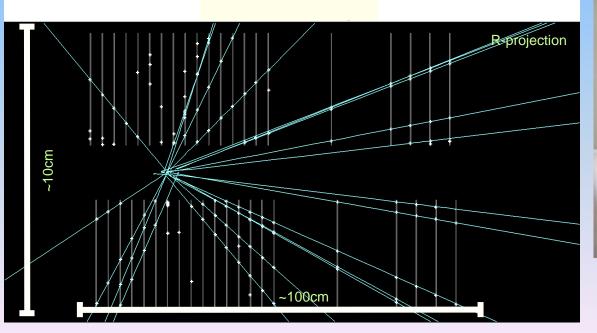
▶ Two Rich detectors exploiting 3 radiators

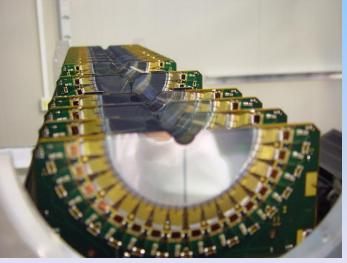

Data: from early 2010, low luminosity running of LHC


- ► low pile-up
- ► low trigger thresholds (at least one track reconstructed in the event) ⇒ no or small corrections

Particles are counted by reconstructing tracks in the VELO

- high and uniform efficiency, closest to interaction point (minimal material), partial backward coverage
- outside main magnetic field, no momentum measurement



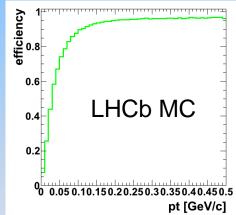


Particles are counted by reconstructing tracks in the VELO

- high and uniform efficiency, closest to interaction point (minimal material), partial backward coverage
- outside main magnetic field, no momentum measurement

Overview of the Analysis

Definition of prompt charged particles at generator level:


- (e, μ , π ,K,p) excluding particles from K_s or hyperon decays.
 - proper lifetimes of all mother particles $\Sigma \tau < 10$ ps

Tracks are required to originate from luminous region.

Correction for remaining non-prompt particle contamination, (5-10)%, mainly tracks from converted photons is taken from MC. Assume scaling with charged particle multiplicity, sys. error: 1%.

No explicit momentum cut

 Due to residual magnetic field and multiple scattering, efficiency drops towards very low momentum ⇒ Using predictions of different event generators, about ~1% of particles are lost. Contained in the efficiency correction

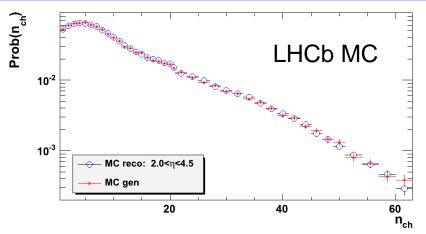
Distributions need to be corrected for a small pile-up contamination

• $(3.7\pm0.4)\%$ of the events have more than one interaction.

Unfolding

- Event particle multiplicities are obtained by unfolding migrations due to reconstruction inefficiencies with fits to a sum of binomial distributions:
 - Observed distribution: events with k tracks with probability f(k):

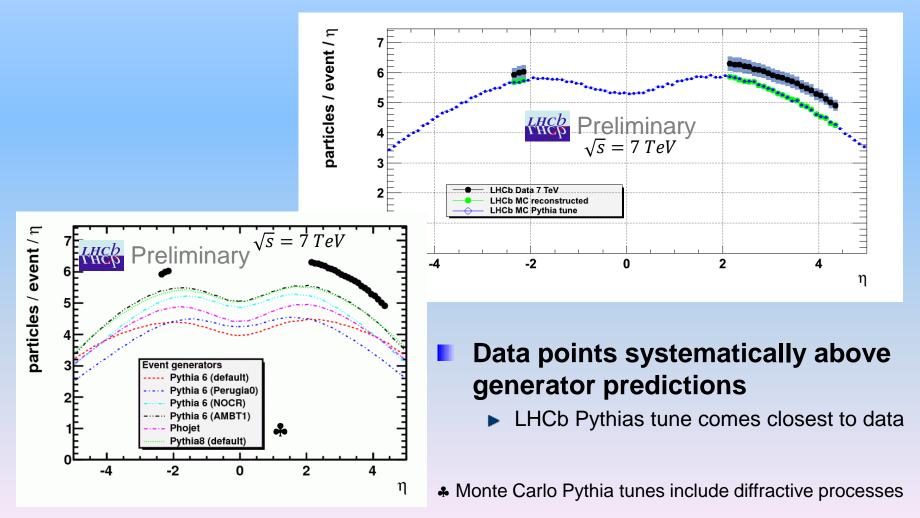
$$\mathbf{f}(\mathbf{k}) = \sum_{i=0}^{\infty} \mathbf{a}_i \times {\binom{N}{k}} (1-\boldsymbol{\varepsilon})^{N-k} \boldsymbol{\varepsilon}^k$$

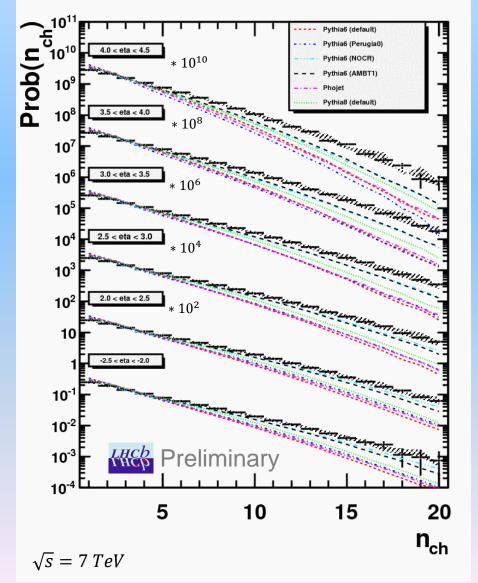

• Weight a_i of each binomial distribution corresponds to the probability for the original particle multiplicity to occur. ε taken from MC and cross checked with data.

Procedure verified with MC simulations:

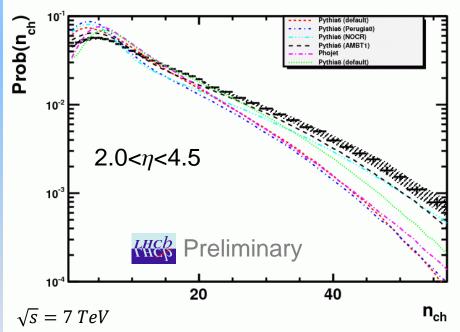
 Reconstructed and corrected particle multiplicity distribution reproduces generated distribution

Systematic error:

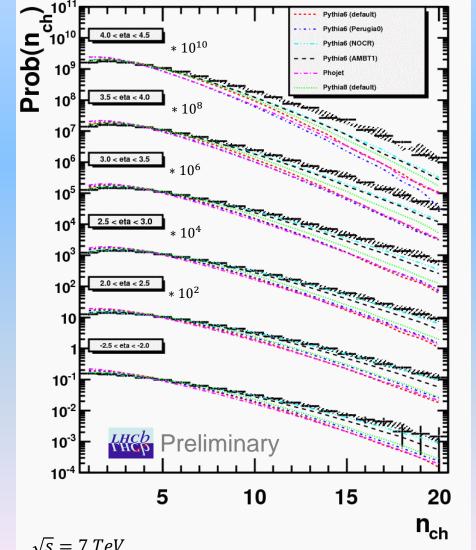

• Change of ε by $\pm 4\%$

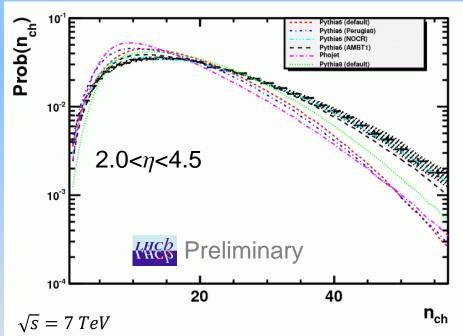

Results: Charged Particles vs η

Normalized to events with with at least one charged particle in the forward acceptance, $2.0 < \eta < 4.5$



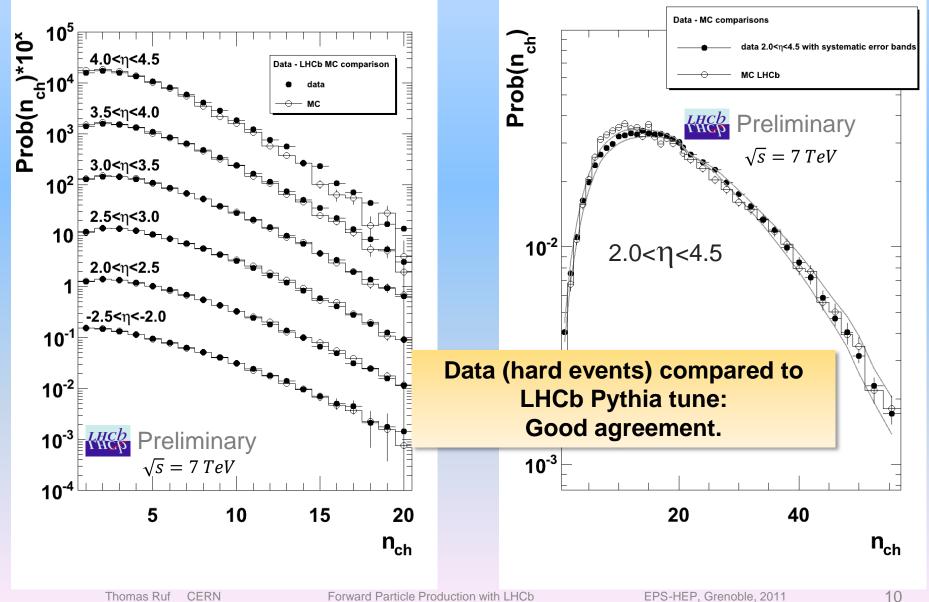
Charged Particle per Event Multiplicities


Normalized to number of events with with at least one charged particle in the related η range


 Pythia6 default and Perugia0 are far off from the data points

Charged Particle per Event Multiplicities

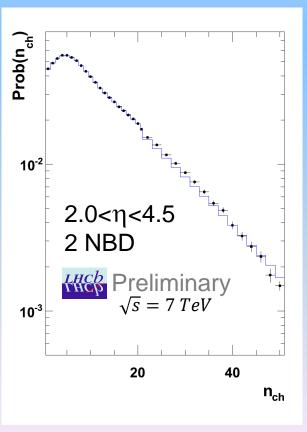
Hard interactions: require at least one charged particle with p_T>1GeV/c in 2.5<η<4.5



Good agreement between Pythia6 (NOCR, AMBT1) tune and data.

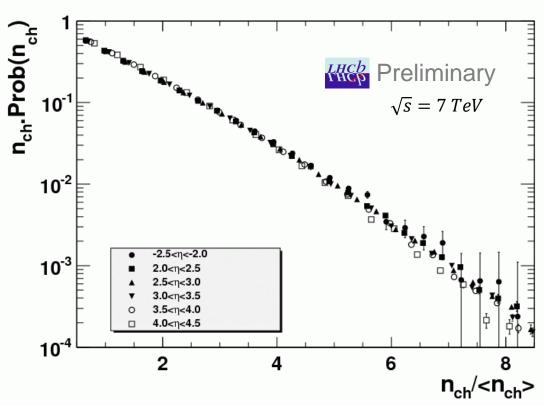
 $\sqrt{s} = 7 TeV$

Results: Charged Particle Multiplicities



Fits to the Particle Multiplicity Distributions

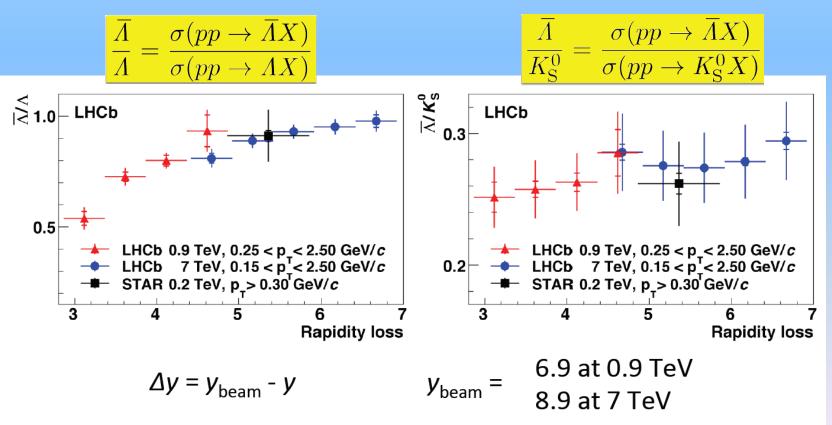
Small η intervals fit well with single negative binomial function, full range requires 2 NBD.


 $P(n) = \frac{(n+k-1)!}{n!(k-1)!} p^k (1-p)^n, p = \frac{k}{k+mean}$

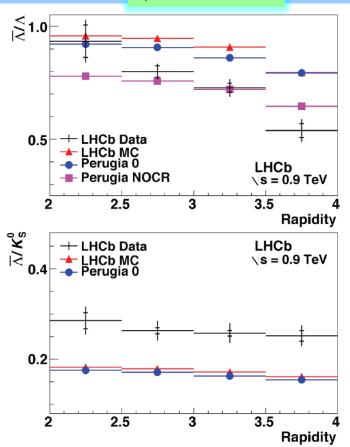
$$\int_{0}^{10^{5}} \int_{0}^{10^{5}} \int_{0$$

- z = n_{ch} / <n_{ch}>, expected to scale with energy. <n_{ch}> taken from negative binomial fit.
- Clearly shows that distributions in each η-range are selfconsistent.
- Will be interesting to see these distributions at higher E_{cm}

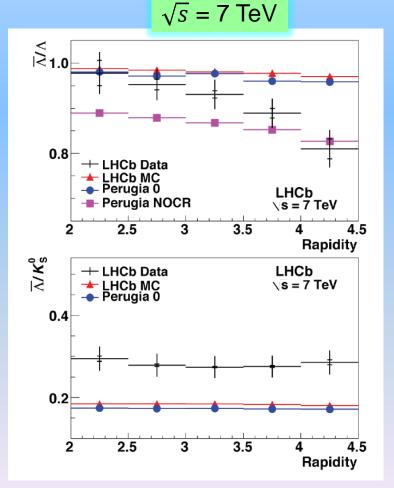
Koba-Nielsen-Olesen


V⁰ Production Studies

Particle Production, V⁰ Ratios


submitted to JHEP http://arxiv.org/abs/1107.0882

Study of baryon number transport in pp-collisions to final state hadrons and baryon vs. meson suppression in hadronization at two different energies:



Extreme Perugia NOCR favoured for $\overline{\Lambda}/\Lambda$ at high rapidity

 $\sqrt{s} = 0.9 \text{ TeV}$

Inclusive *φ* Production

Inclusive *φ* Production

Submitted to Phys.Lett.B

http://arxiv.org/abs/1107.3935

Underestimated by Pythia Perugia 0 and LHCb tune

Integrated cross section for (0.6 GeV/*c* < p_T < 5.0 GeV/*c*) and (2.44 < *y* < 4.06): $\sigma(pp \to \Phi X) = 1758 \pm 19_{stat} + 43_{syst} \pm 182_{syst} \mu b$ Mean p_T : 1.24 ± 0.01 GeV/*c* (data) ; 1.238 ± 0.002 GeV/*c* (Perugia 0 MC)

Summary

- Particle multiplicities and particle production in the forward region are studied with the LHCb detector
 - Charged particle production is underestimated in most generator tunings
 - The LHCb Pythia tune describes the observed particle multiplicities best
 - Differences become smaller for hard interactions
 - The ratio $\overline{\Lambda}/\Lambda$, measuring baryon number transport, is smaller in data than predicted in simulation, particularly at high rapidity.
 - ► The ratio $\overline{\Lambda}/K_S$, measuring baryon-to-meson suppression, is significantly larger than predicted at $\sqrt{S} = 0.9$ TeV and $\sqrt{S} = 7$ TeV

LHCb Pythia Tune

Non default PYTHIA parameters in	the LHCb simulation software
----------------------------------	------------------------------

Parameter	Value	Parameter	Value
$\operatorname{CKIN}(41)$	3.0	PARP(86)	0.66
MSTP(2)	2	PARP(89)	14000
MSTP(33)	3	PARP(90)	0.238
MSTP(81)	21	PARP(91)	1.0
MSTP(82)	3	PARP(149)	0.02
MSTP(52)	2	PARP(150)	0.085
MSTP(51)	10042	PARJ(11)	0.5
MSTP(142)	2	PARJ(12)	0.4
PARP(67)	1	PARJ(13)	0.79
PARP(82)	4.28	PARJ(14)	0.0
PARP(85)	0.33	PARJ(15)	0.018
MSTJ(26)	0	PARJ(16)	0.054
PARJ(33)	0.4	PARJ(17)	0.131

	Perugia0	$\operatorname{corresponding}$	Pythia	parameters
--	----------	--------------------------------	--------	------------

Parameter	Value	Parameter	Value
$\operatorname{CKIN}(41)$	12.	PARP(86)	0.95
MSTP(2)	1	PARP(89)	1800
MSTP(33)	0	PARP(90)	0.25
MSTP(81)	11	PARP(91)	2.0
MSTP(82)	4	PARP(149)	0.48
MSTP(52)	1	PARP(150)	0.09
MSTP(51)	7	PARJ(11)	0.5
MSTP(142)	0	PARJ(12)	0.56
PARP(67)	4	PARJ(13)	0.75
PARP(82)	2.0	PARJ(14)	0.0
PARP(85)	0.9	PARJ(15)	0.0
MSTJ(26)	2	PARJ(16)	0.0
PARJ(33)	0.8	PARJ(17)	0.0

PARP(82): UE IR cutoff at reference ecm, Pythia 0: 3.4 Pythia NOCR: 3.19 PARP(89): Reference ecm PARp(90): UE IR cutoff ecm scaling power