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Motivation 
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q  The presence of the phase transition can manifest itself by characteristic 
behavior of several observables which may vary dramatically from one event to 
the other. 
o  Thus the study of various quantities on an event-by-event basis offers the possibility 

for studying the QGP phase transition and the nature of the QGP matter.  
q  The large particle production at the LHC allows one to make precision event-by-

event measurements. 
q  The challenge of event-by-event studies is to disentangle between the two 

components having a statistical and a dynamical origin. The latter consists of 
o  fluctuations which do not change event-to-event, e.g. those from Bose-Einstein (BE) 

correlations, resonance decays, etc. 
o  the fluctuations which have a new physics origin and may vary from event-to-event. 
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Studies in ALICE: Analysis details 

q  Analysis of pp @ √s = 0.9, 2.76 and 7 TeV 
and Pb—Pb events @ √sNN = 2.76 TeV 
o  Event sample split in two sets having 

different magnetic field polarities (results 
used for the systematic uncertainties) 

q  The trigger consists of the following 
criteria : 
o  two pixel chips hit in the outer layer of the 

SPD, 
o  signal in VZERO-A detector, 
o  signal in VZERO-C detector. 
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q  The centrality in Pb—Pb is selected using 
the VZERO magnitude as the default 
estimator 
o  Centrality bins used in the analysis: 0-5%, 

5-10%, 10-20%,…,70-80%  
o  Different centrality estimators (TPC tracks, 

SPD clusters) investigated 
Ø  Results used for the systematic uncertainty 

q  Due to the nature of the studies, applying 
corrections is highly non-trivial; we need to 
have the acceptance corrections under 
control: 
o  The TPC tracks provide a uniform acceptance 

with minimal corrections 
o  Disadvantage: contamination from secondaries 

Ø  Investigated by varying the cut on the distance 
of closest approach (results used for the 
systematic uncertainty). 
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q  The centrality in Pb—Pb is selected using 
the VZERO magnitude as the default 
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o  Centrality bins used in the analysis: 0-5%, 

5-10%, 10-20%,…,70-80%  
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SPD clusters) investigated 
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q  Possibility to have really fine bins in 

centrality, reducing the fluctuations due to 
the impact parameter 

q  Due to the nature of the studies, applying 
corrections is highly non-trivial; we need to 
have the acceptance corrections under 
control: 
o  The TPC tracks provide a uniform acceptance 

with minimal corrections 
o  Disadvantage: contamination from secondaries 

Ø  Investigated by varying the cut on the distance 
of closest approach (results used for the 
systematic uncertainty). 



Transverse momentum fluctuations 

q  Event-by-event fluctuations of mean transverse momentum contain 
information on the dynamics and correlations in pp and heavy-ion 
collisions. 

q  Reference measurements in pp serve as a baseline with ‘known‘ physics 
like pT correlations due to resonance decays, HBT, (mini-)jets etc. 

q  In heavy-ion collisions, fluctuations may also be related to other 
effects like a critical behaviour of the system in the vicinity of a phase 
boundary or the onset of thermalisation of the system. 

q  The tool used to quantify the fluctuations is the 2—particle correlator: 

o  Cm = 0 in the presence of stat. fluctuations 
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Transverse momentum fluctuations in pp 

q  Significant non-statistical fluctuations 
o  ‘Dilution‘ with multiplicity 

q  Moderate energy dependence of the 2-
particle correlator 
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Transverse momentum fluctuations in pp 

q  Significant non-statistical fluctuations 
o  ‘Dilution‘ with multiplicity 

q  No apparent energy scaling of the 
relative fluctuations 
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q  Good description of the relative 
fluctuations by PYTHIA 
o  Discrepancies at low multiplicities (Nacc < 7) 

q  Poor description by PHOJET 



Transverse momentum fluctuations in Pb—Pb 

q  Same trend as in pp 
o  Significant fluctuations in the 

peripheral bins the magnitude of which 
is decreasing when moving to more 
central collisions 

q  pp and peripheral Pb—Pb indicate a 
common scaling 
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q  Experimental values are not described 
by HIJING both in magnitude and in 
their centrality dependence 
o  HIJING points show also significant 

non-statistical fluctuations with a 
decreasing trend vs centrality 



Transverse momentum fluctuations: Data vs models 
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Transverse momentum fluctuations: Data vs models 

q  Fit the pp baseline with a power law from 
Nacc. > 8 

q  The fit with the same parameters describe 
the Pb—Pb points up to the 30—40% 
centrality bin. 
o  Moving to more central collisions leads to 

significant additional reduction of the relative 
fluctuations 
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q  HIJING points deviate following their own 
monotonic decrease with centrality 
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q  HIJING points deviate following their own 
monotonic decrease with centrality 

q  Different slopes between experimental data 
points and HIJING 

q  No indication for a deviation from the power 
law fit for central collisions in HIJING 



Transverse momentum fluctuations: LHC vs RHIC 

q  The relative fluctuations for both energies are described well by the pp baseline 
fit from peripheral up to mid-central collisions 

q  RHIC data were explained in terms of percolation of strings, thermalization, 
deconfinement 

q  We need to have a model incorporating the two important contributions: jets and 
flow 
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Charge fluctuations 

q  In the presence of the QGP, the relevant carriers of the charge are 
the quarks 

q  Thus in the QGP phase, the unit of charge is 1/3 while in the hadronic 
phase, the unit of charge is 1. 

q  Charge fluctuations depend on the squares of the charges and hence 
strongly depend on which phase they originate from. 

q  The measure of the net charge fluctuations should not be sensitive to: 
o  Volume fluctuations (i.e. fluctuations in the impact parameter) 
o  detector effects 

q  The tool used to quantify the fluctuations is the νdyn. which is not 
sensitive to detector effects, provided that the detection efficiency is 
uniform over the measured kinematic range: 
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C. Pruneau, S. Gavin and S. Voloshin, Phys. Rev. C66, (2002) 044904 



Charge fluctuations: Centrality dependence 

q  νdyn studied for different centralities and pseudo-rapidity windows. 
q  The centrality dependence shows a saturation pattern, already observed at 

RHIC. 
o  |νdyn.| decreases when moving from peripheral to central collisions 
o  Can this be attributed to the larger yield of resonances that don’t contribute to the 

charge fluctuations but only to the multiplicity? 
q  Relative decrease in Δη of the |νdyn.| twice as much in central than in peripheral 

collisions 
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Charge fluctuations: LHC vs RHIC 

q  Nice evolution of the νdyn. as a function of the centrality 
q  The ALICE points, when plotted vs Npart, demonstrate a higher value of νdyn. for 

each centrality bin. 
q  When plotted against the pseudo-rapidity density, there is a nice agreement 

between the LHC peripheral and mid-peripheral and the RHIC mid-peripheral and 
central points. 
o  The ALICE points extend further in dN/dη, exhibiting an additional reduction of the 

fluctuations. 
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Charge fluctuations: Looking for the proper scaling 

q  Observed centrality dependence of the scaled (with the dN/dη) νdyn 
o  In case of independent nucleon-nucleon collisions, then the scaled νdyn. should 

not show any dependence on centrality 
o  Indication of a change in the collision dynamics when going from peripheral 

to central collisions. 
q  Additional 7.5% reduction of the fluctuations compared to the highest 

RHIC energy. 
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Charge fluctuations: Comparison with theory 

q  Initial estimate by Jeon and Koch about the values of the 
parameter D in case of a pion gas and the QGP phase. 

q  The relevant values were further refined by the same 
authors taking into account the contributions from 
resonances. 

q  The experimental values are larger than the QGP 
prediction (ideal QGP) but still lower than the 
expectation for a hadron gas with the inclusion of 
resonances 
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q  Initial fluctuations diluted by the hadronization and the 
final state interactions 

q  Introduction of the diffusion parameter to trace the 
initial magnitude of the fluctuations 
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Summary and outlook 

q  First ebye observables studied at the LHC with the ALICE experiment in pp 
collisions @ √s = 0.9, 2.76 and 7 TeV and Pb—Pb events @ √sNN = 2.76 TeV 

q  The transverse momentum fluctuations demonstrate: 
o  a universal scaling with energy in pp collisions, 
o  a nice evolution of the relative fluctuations from pp to mid-peripheral Pb—Pb collision 

with an additional reduction for the more central events, 
o  the centrality dependence of the fluctuations can’t be described by standard models 

(i.e. HIJING). 
q  The charge fluctuations indicate: 

o  a further reduction of the magnitude of the fluctuations measured in νdyn. going from 
RHIC to LHC, 

o  a change in the collision dynamics when νdyn. is scaled with the dN/dη, 
o  the resulting fluctuations have a magnitude which resides between the expectations 

from theory for a hadron gas with the inclusion of resonances and the corresponding 
value for a QGP phase transition. 

Ø  Important to get a description of the dilution of the initial fluctuations due to the final state 
effects 

q  More things to come:   
o  Balance functions è time of hadronization, radial flow 
o  Identified particle ratios 
o  long range correlations 
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BACKUP 

21.07.2011 Panos.Christakoglou@nikhef.nl - EPS-HEP 2011, Grenoble 23 



ALICE: Experimental setup 
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Transverse momentum fluctuations in pp 

q  Significant non-statistical fluctuations 
o  ‘Dilution‘ with multiplicity 

q  Moderate energy dependence of the 2-
particle correlator 

q  No apparent energy scaling of the 
relative fluctuations 
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Transverse momentum fluctuations: LHC vs RHIC 

q  The relative fluctuations for both energies are described well by the pp baseline 
fit from peripheral up to mid-central collisions 

q  RHIC data were explained in terms of percolation of strings, thermalization, 
deconfinement 

q  We need to have a model incorporating the two important contributions: jets and 
flow 
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Charge fluctuations: Looking for the proper scaling 

q  Observed centrality dependence of the scaled (with the dN/dη) νdyn 
o  In case of independent nucleon-nucleon collisions, then the scaled νdyn. should 

not show any dependence on centrality 
o  Indication of a change in the collision dynamics when going from peripheral 

to central collisions. 
q  Additional 7.5% reduction of the fluctuations compared to the highest 

RHIC energy. 
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Charge fluctuations: Looking for the proper scaling 

q  No centrality dependence of the scaled (with the number of 
participants) νdyn 

q  Fluctuations/participant show no centrality dependence? 
q  A strong energy dependence is observed 
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Charge fluctuations: Attempt to trace the initial fluctuations 

q  Several attempts were made to trace the initial fluctuations. 
q  According to Shuryak and Stephanov, the initial fluctuations are diluted 

by the final state interactions and the limited experimental acceptance. 
q  Based on a refined formulation of the previous idea, Gavin et al. 

introduced the notion of the causal diffusion 
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