Global Fit to CKM Data

Valentin Niess on behalf of the CKMfitter group

- J. Charles, O. Deschamps , S. Descotes-Genon, R. Itoh, H. Lacker,
- A. Menzel,

Theory, CPT Marseille LHCb, LPC Clermont-Ferrand Theory, LPT Orsay Belle, KEK Tsukuba Atlas & BaBar, Humboldt U., Berlin Atlas, Humboldt U., Berlin

S. Monteil, J. Ocariz, J. Orloff S. T'Jampens, V. Tisserand, K. Trabelsi, LHCb, LPC Clermont-Ferrand Atlas & BaBar, LPNHE Paris Theory, LPC Clermont-Ferrand LHCb, LAPP, Annecy-le-Vieux BABAR & LHCb, LAPP Annecy-le-Vieux Belle, KEK Tsukuba

Parameterisation of the CKM Matrix

D Phase invariant parameterisation conserving the CKM matrix unitarity at any order in λ . \Rightarrow Wolfenstein parameterisation with Jarlskog like phase invariants as in Charles *et al.* EPJ C41,1-131 (2005). 4 free parameters, $A, \lambda, \overline{\rho}$ and $\overline{\eta}$ taken as:

$$\lambda = \frac{|V_{us}|}{\sqrt{|V_{ud}|^2 + |V_{us}|^2}}, \quad A\lambda^2 = \frac{|V_{cb}|}{\sqrt{|V_{ud}|^2 + |V_{us}|^2}} \quad \text{and} \quad \bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}, \text{ with } V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

- λ is measured from $|V_{ud}|$ and $|V_{us}|$ in superallowed nuclear β -decays and (semi)leptonic K decays, resp. • A is determined from $|V_{cb}|$ and λ .
- $\bar{\rho}$ +i $\bar{\eta}$ is to be determined from angles and sides measurements of the B_d unitarity triangle.

□ B_d Unitarity Triangle (UT)

Angles

Methodology

■ Global fit to CKM parameters

+ Use Frequentist Hypothesis testing to build statistical significance (p-value) functions from which estimates and confidence intervals are obtained; test statistic = Maximum Likelihood Ratio = $\Delta \chi^2$.

+ Dedicated *RFit* scheme for the treatment of theoretical systematics. **Theoretical systematics** are considered as additional **nuisance parameters**.

■ data = weak ⊗ QCD ⇒ need for hadronic inputs; often LQCD with our own averaging scheme (OOA), following an algorithmic scheme with an 'Educated RFit' approach.

Illustrative Rfit example black: Gaussian+flat pdf for syst, red: RFit

Observables

■ Added leptonic decays observables with a detailed treatment as in Deschamps *et al.*, PRD82, 073012 (2010) \Rightarrow Improved accuracy for $|V_{us}|$.

Updated γ : inputs for ADS (Belle+CDF) \oplus improved statistical treatment of γ ; use of a more powerful p-Value to treat nuisances.

		CKM	Process		Observables	The	eoretical inputs	
		Vud	$0^+ \rightarrow 0^+$ transitions	$ V_{ud} _{nucl} =$	0.97425 ± 0.00022	Nuclea	ar matrix elements	
		$ V_{us} $	$K \to \pi \ell \nu$	$ V_{us} _{semi}f_+(0) =$	0.2163 ± 0.0005	$f_{+}(0) =$	$0.9632 \pm 0.0028 \pm 0.0051$	
			$K \rightarrow e \nu_e$	$\mathcal{B}(K \to e\nu_e) =$	$(1.584 \pm 0.0020) \cdot 10^{-3}$	$f_K =$	$156.3 \pm 0.3 \pm 1.9~{\rm MeV}$	1
			$K o \mu u_{\mu}$	$\mathcal{B}(K \to \mu \nu_{\mu}) =$	0.6347 ± 0.0018			
CD			$ au o K u_{ au}$	$\mathcal{B}(\tau \to K \nu_{\tau}) =$	0.00696 ± 0.00023			
CP		$ V_{us} / V_{ud} $	$K \to \mu \nu / \pi \to \mu \nu$	$\frac{\mathcal{B}(K \to \mu \nu_{\mu})}{\mathcal{D}(K \to \mu \nu_{\mu})} =$	$(1.3344 \pm 0.0041) \cdot 10^{-2}$	$f_K/f_\pi =$	$1.205 \pm 0.001 \pm 0.010$	6
$A.\lambda$		1 001/1 001		$\mathcal{B}(\pi \to \mu \nu_{\mu})$ $\mathcal{B}(\pi \to K \nu_{\mu})$				Ž
	\neg		$\tau \to K \nu / \tau \to \pi \nu$	$\left \frac{\mathcal{B}(\tau \to \pi\nu_{\tau})}{\mathcal{B}(\tau \to \pi\nu_{\tau})}\right =$	$(6.33 \pm 0.092) \cdot 10^{-2}$			
R_u, R_t		$ V_{cd} $	$D o \mu u$	$\mathcal{B}(D \to \mu \nu) =$	$(3.82 \pm 0.32 \pm 0.09) \cdot 10^{-4}$	$f_{D_s}/f_D =$	$1.186 \pm 0.005 \pm 0.010$	
Modulus		$ V_{cs} $	$D_s \rightarrow \tau \nu$	$\mathcal{B}(D_s \to \tau \nu) =$	$(5.29 \pm 0.28) \cdot 10^{-2}$	$f_{D_s} =$	$251.3 \pm 1.2 \pm 4.5~{\rm MeV}$	
and sides			$D_s \rightarrow \mu \nu$	$\mathcal{B}(D_s \to \mu \nu_\mu) =$	$(5.90 \pm 0.33) \cdot 10^{-3}$			
from rates		$ V_{ub} $	semileptonic decays	$ V_{ub} _{semi} =$	$(3.92 \pm 0.09 \pm 0.45) \cdot 10^{-3}$	form fac	tors, shape functions	
nomrates			B ightarrow au u	$\mathcal{B}(B \to \tau \nu) =$	$(1.68 \pm 0.31) \cdot 10^{-4}$	$f_{B_s} =$	$231\pm3\pm15~{\rm MeV}$	
						$f_{B_s}/f_B =$	$1.209 \pm 0.007 \pm 0.023$	
		$ V_{cb} $	semileptonic decays	$ V_{cb} _{semi} =$	$(40.89 \pm 0.38 \pm 0.59) \cdot 10^{-3}$	form fact	ors, OPE matrix elts	
	Γ	α	$B \to \pi \pi, \rho \pi, \rho \rho$	branching ra	atios, CP asymmetries	iso	spin symmetry	
CP		β	$B \rightarrow (c\bar{c})K$	$\sin(2\beta)_{[c\bar{c}]} =$	0.678 ± 0.020	-		Z
<u> </u>		γ	$B \rightarrow D^{(*)}K^{(*)}$	inputs f	for the 3 methods	GGSZ, O	GLW, ADS methods	2
$ ho,\eta$	\neg	$V_{tq}^*V_{tq'}$	Δm_d	$\Delta m_d =$	$0.507 \pm 0.005 \ {\rm ps}^{-1}$	$\hat{B}_{B_s}/\hat{B}_{B_d} =$	$1.01 \pm 0.01 \pm 0.03$ *	· <
Angles from			Δm_s	$\Delta m_s =$	$17.77 \pm 0.12 \text{ ps}^{-1}$	$\hat{B}_{B_s} =$	$1.28 \pm 0.02 \pm 0.03$	
phases in		$V_{tq}^*V_{tq'}, V_{cq}^*V_{cq'}$	ϵ_K	$ \epsilon_K =$	$(2.229 \pm 0.010) \cdot 10^{-3}$	$\hat{B}_K =$	$0.730 \pm 0.004 \pm 0.036$ *	
interferences						$\kappa_{\epsilon} =$	$0.940 \pm 0.013 \pm 0.023$	

Compilation of numerical input values available at: http://ckmfitter.in2p3.fr

Improved Treatment of |V_{us}|

■ Combining constraints from leptonic decays improves accuracy on $|V_{us}|$ by ~50% hence on the CKM parameters λ (50%) and A (25%). Little impact on UT ($\bar{\rho},\bar{\eta}$) which is normalised.

Direct constraints from leptonic decays are **in good agreement** with other **indirect observables** (B's, $\varepsilon_{\rm K}$).

Global fit results (all): $A = 0.816^{+0.011}_{-0.021}, \quad \lambda = 0.22518^{+0.00036}_{-0.00077}$

(1 σ interval)

Improved Treatment of γ

■ γ from interferences between $B^- \rightarrow D^0$ K⁻ and $B^- \rightarrow D^0$ K⁻. 3 methods with different D final states: GLW (CP eigenstates), ADS (Kπ, 2 Cabibbo supp.) & GGSZ (3 body, Dalitz).

p-value

Fit simultaneously γ and hadronic quantities: phases δ_B , suppression ratios, r_B . The accuracy on γ depends critically on rB \subset [0.1;0.2]

 \Rightarrow nuisance treated within a full frequentist /conservative scheme.

Updated ADS (D(K π)K) inputs :

- Belle, PRL 106, 231803 (2011)
- CDF , P@LHC2011
- \Rightarrow better rejection of small r_B values

■ Changed from the supremum, p_{sup} , p-Value to the Berger-Boos, p_{β} , p-Value [JASA 89, 427 (1994)] : better control over nuisance parameters from an auxiliary test; nuisances are constrained to a 3.3 σ confidence interval based on their Likelihood.

Global Fit of the UT

Fit of UT apex is dominated by $sin(2\beta), \Delta m_d/\Delta m_s$ and α . Excellent agreement between these 3 inputs.

Overall consistent picture

The KM mechanism is the dominant source of CP in B's

7

From EPS 2001 to EPS 2011

Metrology and Prophecies

Predictions of selected flavour observables within the Standard Model Charles et al., arXiv:1106.4041 [hep-ph] (to appear in PRD).

Treatment for the predictions of neutral B meson leptonic decays to NLO.

Included CKM predictions for radiative B meson decays and rare Kaon decays.

■ Overall consistency but ... Ongoing discrepancy that reduces to a disagreement between BR[B $\rightarrow \tau \nu$] and sin(2 β_{cc})

Taking one of these two observables out of the fit, the χ^2_{min} drops by 2.6 σ .

	Observable	Measurement	Prediction	Pull (σ)		
	Charged Leptonic Decays					
	$\mathcal{B}(B^+ \to \tau^+ \nu_{\tau})$	$(16.8 \pm 3.1) \cdot 10^{-5}$	$(7.57 \ {}^{+0.98}_{-0.61}) \cdot 10^{-5}$	2.8		
	$\mathcal{B}(B^+ \to \mu^+ \nu_\mu)$	$< 10^{-6}$	$(3.74 \ ^{+0.44}_{-0.38}) \cdot 10^{-7}$	-		
	$\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})$	$(5.29 \pm 0.28) \cdot 10^{-2}$	$(5.44 \ ^{+0.05}_{-0.17}) \cdot 10^{-2}$	0.5		
	$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	$(5.90 \pm 0.33) \cdot 10^{-3}$	$(5.39 \ ^{+0.21}_{-0.22}) \cdot 10^{-3}$	1.3		
	$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	$(3.82 \pm 0.32 \pm 0.09) \cdot 10^{-4}$	$(4.18 \ ^{+0.13}_{-0.20}) \cdot 10^{-4}$	0.6		
	Neutral Leptonic B decays					
	$\mathcal{B}(B^0_s \to \tau^+ \tau^-)$	-	$(7.73 \ ^{+0.37}_{-0.65}) \cdot 10^{-7}$	-		
	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	$< 32 \cdot 10^{-9}$	$(3.64 \ ^{+0.17}_{-0.31}) \cdot 10^{-9}$	-		
	$\mathcal{B}(B^0_s \to e^+e^-)$	$<2.8\cdot10^{-7}$	$(8.54 \ ^{+0.40}_{-0.72}) \cdot 10^{-14}$	-		
	$\mathcal{B}(B^0_d \to \tau^+ \tau^-)$	$< 4.1 \cdot 10^{-3}$	$(2.36 \ ^{+0.12}_{-0.21}) \cdot 10^{-8}$	-		
	$\mathcal{B}(B^0_d \to \mu^+ \mu^-)$	$< 6 \cdot 10^{-9}$	$(1.13 \ ^{+0.06}_{-0.11}) \cdot 10^{-10}$	-		
	$\mathcal{B}(B^0_d \to e^+ e^-)$	$< 8.3 \cdot 10^{-9}$	$(2.64 \ ^{+0.13}_{-0.24}) \cdot 10^{-15}$	-		
	$B_q - \bar{B}_q$ mixing observables					
	$\Delta \Gamma_s / \Gamma_s$	$0.092^{+0.051}_{-0.054}$	$0.179 \begin{array}{c} +0.067 \\ -0.071 \end{array}$	0.5		
	$a^d_{ m SL}$	$(-47 \pm 46) \cdot 10^{-4}$	$(-6.5 \ ^{+1.9}_{-1.7}) \cdot 10^{-4}$	0.8		
	$a_{ m SL}^s$	$(-17 \pm 91^{+12}_{-23}) \cdot 10^{-4}$	$(0.29 \ ^{+0.09}_{-0.08}) \cdot 10^{-4}$	0.2		
	$a^s_{ m SL} - a^d_{ m SL}$	-	$(6.8 + 1.9)_{-1.7} \cdot 10^{-4}$	-		
	$\sin(2\beta)$	0.678 ± 0.020	$0.832 \begin{array}{c} +0.013 \\ -0.033 \end{array}$	2.7		
-	$2\beta_s$	$\begin{matrix} [0.04; 1.04] \cup [2.16; 3.10] \\ 0.76 \begin{array}{c} {}^{+0.36}_{-0.38} \pm 0.02 \end{matrix}$	$0.0363 \begin{array}{c} +0.0016 \\ -0.0015 \end{array}$	-		
		Radiative B decays	·			
	$\mathcal{B}(B_d \to K^*(892)\gamma)$	$(43.3 \pm 1.8) \cdot 10^{-6}$	$(64 + 22) - 10^{-6}$	1.2		
	$\mathcal{B}(B^- \to K^{*-}(892)\gamma)$	$(42.1 \pm 1.5) \cdot 10^{-6}$	$(66 \ ^{+21}_{-20}) \cdot 10^{-6}$	1.1		
	$\mathcal{B}(B_s o \phi \gamma)$	$(57^{+21}_{-18}) \cdot 10^{-6}$	$(65 + 31) - 24 \cdot 10^{-6}$	0.1		
	$\mathcal{B}(B \to X_s \gamma) / \mathcal{B}(B \to X_c \ell \nu)$	$(3.346 \pm 0.247) \cdot 10^{-3}$	$(3.03 \ {}^{+0.34}_{-0.32}) \cdot 10^{-3}$	0.2		
	Rare K decays					
	$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$	$(1.75^{+1.15}_{-1.05}) \cdot 10^{-10}$	$(0.854 \ ^{+0.116}_{-0.098}) \cdot 10^{-10}$	0.8		
	$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$	_	$(0.277 \ ^{+0.028}_{-0.035}) \cdot 10^{-10}$	-		

$sin(2\beta_{cc})$ vs BR[B $\rightarrow \tau \nu$]

The combination $sin(2\beta_{cc})$ and $BR[B \rightarrow \tau \nu]$ favours 2 solutions in contradiction with other inputs:

 \Rightarrow Within the SM, either the observed BR[B $\rightarrow \tau v$] is too high either sin(2 β_{cc}) is too low ...

Yellow area: 95% CL for combined fit with $sin(2\beta_{cc})$ and BR[B $\rightarrow \tau \nu$]. The orange dashed area indicates the 1 σ confidence level.

Measurements are consistent between BaBar and Belle & different tags.

LQCD prediction for the mixing term $f_{Bd}^{2} \times B_{Bd}$ is **in perfect agreement** with observation. Would require both decay constant, f_{Bd} , and bag parameter, B_{Bd} , to be severely off in order to accommodate measurements ...

New Physics: 2HDM Type II

• Charged higgs contribution can modify BR[B $\rightarrow \tau v$] as a multiplicative term in 2HDM Type II model. Note that one would need $r_{\mu}^{B} \approx -2.5$ to fit BR[B $\rightarrow \tau v$] \Rightarrow fine tuned solution to m_B.

$$\mathsf{BR}(B^{+} \to \tau^{+} \nu) = \frac{G_{F}^{2} m_{B} \tau_{B}}{8\pi} m_{\tau}^{2} \left(1 - \frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B_{d}}^{2} |V_{ub}|^{2} \times (1 + r_{H}^{B})^{2} \quad B^{+} \left\{ b \right\}_{u} = \frac{H^{+}}{r_{H}^{B}} \approx -\tan^{2}(\beta) m_{B}^{2} / m_{H^{+}}^{2} v_{\tau}$$

Combined 2HDM(II) analysis within CKMfitter including modified constraints from mesons leptonic and semileptonic tree decays, loop radiative $b \rightarrow s\gamma$ decays, B- \overline{B} mixing and Z $\rightarrow b\overline{b}$ partial width: Deschamps *et al.*, PRD**82**, 073012 (2010).

 \Rightarrow Fine tuned solution ruled out at 95% CL from BR[B \rightarrow D $\tau\nu$] and BR[K $\rightarrow\mu\nu$]/BR[$\pi\rightarrow\mu\nu$] constraints mostly. No indications in favour of a Type II charged Higgs.

New Physics in B's Mixing

■ Assume that NP only affects shorts distance Physics in $|\Delta B| = 2 \Rightarrow$ Only the dispersive mixing term, M_{12}^q , is modified by NP. Model independent parameterisation: Lenz & Nierste JHEP 706 (2007) 72. Generic study within CKMfitter: Charles *et al.*, PRD**34**, 717-731 (2011) (restrict to 'scenario I' here: general case with $\Delta_s \neq \Delta_d$).

$$\frac{M_{12}^{q}}{M_{12}^{SM,q}} = \left(\operatorname{Re}[\Delta_{q}] + i\operatorname{Im}[\Delta_{q}]\right) = \left|\Delta_{q}\right| e^{2i\Phi_{q}^{NP}}$$

Predictions modified by NP:

parameter	prediction in the presence of NF	
Oscil. Δm_q	$ \Delta_q^{ m NP} imes \Delta m_q^{ m SM}$	
Phases $2eta$	$2\beta^{\rm SM} + \Phi^{\rm NP}_d$	
$2eta_s$	$2\beta_s^{ m SM} - \Phi_s^{ m NP}$	
2lpha	$2(\pi - \beta^{\rm SM} - \gamma) - \Phi^{\rm NP}_d$	
$\Phi_{12,q} = \operatorname{Arg}\left[-\frac{M_{12,q}}{\Gamma_{12,q}}\right]$	$\Phi_{12,q}^{\scriptscriptstyle\mathrm{SM}}+\Phi_q^{\scriptscriptstyle\mathrm{NP}}$	
SL asym. A^q_{SL}	$\frac{\Gamma_{12,q}}{M_{12,q}^{\mathrm{SM}}} \times \frac{\sin(\Phi_{12,q}^{\mathrm{SM}} + \Phi_q^{\mathrm{NP}})}{ \Delta_q^{\mathrm{NP}} }$	
dif. $\Delta \Gamma_q$	$2 \Gamma_{12,q} \times \cos(\Phi_{12,q}^{\mathrm{SM}} + \Phi_q^{\mathrm{NP}})$	

 \Rightarrow **2 new phases** (+2 moduli) to accommodate discrepancies.

CKM parameters are constrained by a fit to unaffected observables:

New Physics in B_d Mixing

■ A single additional negative NP phase in B_d mixing could accommodate a too low $sin(2\beta_{cc})$ (2.7 σ). From the global fit we find: $\Phi_d^{NP} = (-12.9^{+3.8}_{-2.7})^\circ$.

• Dominant constraints are sin(2 β) and Δm_d . A_{SL} 's help to exclude the CKM symmetric solution with $\eta < 0$.

• The observed shift traduces the tension between BR[$B \rightarrow \tau \nu$] and sin(2 β_{cc}). The SM hypothesis is disfavoured at 2.5 σ . If to take out BR[$B \rightarrow \tau \nu$] one recovers agreement at 1.1 σ .

New Physics in B_s Mixing

Deviations in A_{SL} and ϕ_s could sign **an additional NP phase** in B_s mixing.

• The dominant constraints in the fit come from A_{SL} , ($\phi_s = -2\beta_s$, $\Delta\Gamma_s$) and Δm_s .

■ With 2009 Tevatron average for ϕ_s (2.8 fb⁻¹) and old D0 (6.1 fb⁻¹) A_{SL}. The SM 2D hypothesis $\Delta_s = 1$ was disfavoured at 2.7 σ with or without B $\rightarrow \tau \nu$. Note that:

- Taking out $A_{sL}(D\emptyset)$ the discrepancy was only 1.9 σ .

- The disagreement with the SM is driven in the same direction by φ_{s} and A_{SL}

- Δm_s agrees with the SM which further constraints $|\Delta_s|$ to ~1.

NP in B_s Mixing : and with Updated A_{SL}?

■ The observed deviation in A_{SL} (3.9 σ , D0 9 fb⁻¹) might indicate an additional negative **NP phase** in B_s mixing. From the fit w/o ϕ_s we expect: $\Phi_s^{NP} = (-59^{+18}_{-12} \cup -127^{+12}_{-19})^\circ$. It agrees with 2009 Tevatron average (2.8 fb⁻¹) for ϕ_s and latest observations. Eagerly waiting from updated Tevatron average and results from LHCb!

Conclusion and Outlooks

The KM mechanism is obviously at work at O(0.1) but there is still room for New Physics in the mixing of both B_d and B_s mesons.

■ Intriguing discrepancies are pointing out requiring updated/crosschecked inputs ... Some of those are just around the corner: ϕ_s , A_{SL} , ..., $B_s \rightarrow \mu\mu$, $B_d \rightarrow K^* \mu\mu$?!

 \Rightarrow Eagerly waiting from updated results from the Tevatron and LHC experiments !

More on RFit and P-Values

■ Theoretical systematics are considered as additional *nuisance parameters* bounded over a confident enough range. On the latter interval the significance is flat.

Note that this result is very different from what one would get from a statistical modelling of the systematic (ex: uniform over the range)

■ In most cases the p-value is derived using Wilks' theorem, assuming asymptotic regime. Some cases where nuisance parameters are of prime importance, like gamma, deserve a full computation of the p-Value.

Simple illustrative example allowing analytical resolution:

$$p - value = \begin{cases} 1 & \text{if } x - \mu \in [-\Delta; \Delta] \\ \frac{1}{2} (\operatorname{erfc}[\frac{|x - \mu| + \Delta}{\sqrt{2}\sigma}] + \operatorname{erfc}[\frac{|x - \mu| - \Delta}{\sqrt{2}\sigma}]) & \text{elsewhere} \end{cases}$$
(supremum)

Gaussian pdf + parametric systematic (supremum)

More on LQCD Averages

■ More and more accurate theoretical predictions (ex: $f_{Bs}/f_{Bd} \sim 2-3\%$) but various methods, results and error estimates depending on collaborations. Need to combine these results; several methods also ...

 \Rightarrow For now we perform **our own average** using an **algorithmic procedure** with only unquenched 2 and 2+1 LQCD results.

■ Our Own Average: Educated *RFit* scheme illustrated here with f_{Bs}

1) From selected LQCD results estimate f_{Bs} central value in the *RFit* scheme, distinguishing statistic and systematic contributions to uncertainties.

2) Perform and educated combination of uncertainties; Not more nor less accurate than the most precise individual LQCD prediction.

$$\Rightarrow f_{B_s} = 231 \pm 3 \pm 15 \text{ MeV}$$

For more details:

+ V. Tisserand (CKMfitter Group), Moriond EW 2009 proceedings [arXiv:0905.1572];

+ S. Descotes-Genon (CKMfitter Group), *IP3 workshop: Lattice meets Phenomenology, 2010, Durham* http://conference.ippp.dur.ac.uk/getFile.py/access?contribId=6&sessionId=2&resId=0&materialId=slides&confId=294

Gamma and the Berger-Boos p value

The Berger-Boos, \mathbf{p}_{β} , **p-Value** [JASA 89, 427 (1994)] makes a more powerful use of the data than the supremum p value, p_{sup} , by providing **control over the nuisance parameters**, θ . It is a valid / conservative p value defined as: $p_{\beta} = \sup_{\theta \in C_{\beta}} p(\theta) + \beta$, where C_{β} is a level 1- β confidence set for the nuisance θ .

 \Rightarrow we use the **Likelihood** under the null hypothesis to infer the **confidence region** C_B.

The very increased accuracy on γ not only comes from the new statistical treatment, but also from more accurate measurements, which help constraining the nuisance, r_B . This is illustrated below by re-playing various stat. treatment with CKM08 data.

BR[B $\rightarrow \tau v$] vs sin(2 β) : Experimental Side

$$\mathsf{BR}(B^{+} \to \tau^{+} \nu) = \frac{G_{F}^{2} m_{B} \tau_{B}}{8\pi} m_{\tau}^{2} \left(1 - \frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} \left|f_{B_{d}}^{2} \left|V_{ub}\right|^{2}$$

$$B^{+} \begin{cases} \overline{b} \\ u \\ u \\ v_{\tau} \end{cases}$$

• Helicity-suppressed annihilation decay sensitive to $(f_{Bd} \times |V_{ub}|)^2$

Experimental measurements

	$\mathfrak{B}[B \rightarrow \tau \nu] x 10^4$
Belle (hadronic)	1.79±0.71
Belle (semi-leptonic)	1.54±0.48 [New]
Belle	1.62±0.40
BABAR (hadronic)	1.80±0.61 ^[New]
BABAR (semi-leptonic)	1.70±0.82
BABAR	1.76±0.49
World Average	1.68 ± 0.31

The various measurements for $B \rightarrow \tau v$ look consistent; we combine them using a weighted mean and assume Gaussian distributions. The p-value for this hypothesis is 11% (1.6 σ).

CKMfit prediction: $(0.757^{+0.098}_{-0.061}) \times 10^{-4}$ (1 σ , without meas.)

sin(2 β) from HFAG charmonium WA: sin(2 β_{cc}) = 0.673(23), no obvious tension.

There is an overall experimental agreement that either $\mathfrak{B}[B \rightarrow \tau \nu]$ is too high or sin(2 β_{cc}) too low

BR[B $\rightarrow \tau \nu$] vs sin(2 β) : LQCD Side

■ The bag parameter B_{Bd} can be measured from the ratio of B $\rightarrow \tau v$ to Δm_d eliminating the dependency to f_{Bd} , as:

$$\frac{\mathfrak{B}[B \to \tau \nu]}{\Delta m_d} = \frac{3\pi}{4} \frac{m_\tau^2 \tau_B}{m_W^2 \eta_B S[x_t]} (1 - \frac{m_\tau^2}{m_B^2})^2 \frac{\sin^2(\beta)}{\sin^2(\alpha + \beta)} \frac{1}{|V_{ud}|^2 B_{B_d}}$$

The tension is still there at ~ 2.7 σ ! But a factor of 2 off on B_{Bd} while keeping f_{Bd} wouldn't work in the global fit ...

► Let's let f_{Bd} and B_{Bd} be completely free and fit them from all observables. What do we get?

 $\Rightarrow \text{No more tension / no more constraints} \\ \Rightarrow \text{The global fit is accommodated keeping} \\ f_{Bd}^2 \times B_{Bd} \approx \text{const to fit } \Delta m_d \text{ while increasing} \\ f_{Bd} \text{ to fit } B \rightarrow \tau \nu$

Something Rotten in ϵ_{κ} ?

■ Reminder from Buras & Guadagnoli (Phys. Rev. D78, 033005 (2008)): there is an **additional suppression factor**, $\kappa_{\epsilon,}$ to $|\epsilon_{\kappa}|$. We use $\kappa_{\epsilon} = 0.940 \pm 0.013 \pm 0.023$ [Charles *et al.*, PRD**34**, 717-731 (2011)]; consistent with other estimates.

 $\Rightarrow \kappa_{\epsilon}$ does not spoil the prediction for $|\epsilon_{\kappa}|$ dominated by other uncertainties: $|V_{cb}|^4 \sim 7\%$, $B_{\kappa} \sim 5\%$.

Any tension between direct measurement of $|\varepsilon_{K}|$ and indirect measurement from the global fit, through sin($2\beta_{cc}$)?

 \Rightarrow Using Gaussian distributions for systematic uncertainties and including the factor κ_{ϵ} we get 1.6 σ deviation

⇒ With our *Educated RFit* treatment of systematics no deviation is seen. The measurement is compatible with our fit best guess considering **uncertainties** on CKM parameters (through $|V_{cb}|^4$ mainly and hadronic uncertainties from $B_{\kappa} \sim 5\%$).

V_{ub} : Inclusive vs Exclusive

■ Similar treatment to LQCD inputs -*Educated RFit* scheme- to combine the two methods for |Vub|:

- Inclusive: b \rightarrow ulv + Operator Product Expansion
- Exclusive: $B \rightarrow \pi I \nu$ + Form Factors

The discrepancy between Incl/Excl depends on the statistical treatment

2HDM : Fine Tuned Solution

• Charged Higgs contributions can increase $\Re[B \rightarrow \tau v]$ prediction but only in a fine tuned scenario.

$$\mathsf{BR}(B^{+} \to \tau^{+} \nu) = \frac{G_{F}^{2} m_{B} \tau_{B}}{8 \pi} m_{\tau}^{2} \left(1 - \frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B_{d}}^{2} |V_{ub}|^{2} \times (1 + r_{H}^{B})^{2} \qquad B^{+} \left\{ \frac{\bar{b}}{\mu} - \frac{H^{+}}{\mu} - \frac{H^{+}}{\mu} + \frac{\pi^{+}}{\mu} \right\}$$

• Charged higgs contribution can modify $\Re[B \rightarrow \tau v]$ as a multiplicative term: $r_H^B \approx -\tan^2(\beta) m_B^2 / m_{H^+}^2$ in 2HDM Type II model. Note that one would need $r_H^B \approx -2.5$ to fit $\Re[B \rightarrow \tau v]$ (fine tuned solution).

 \Rightarrow Requires a global analysis with other observables to check implications.

2HDM : Global Fit

• **Combined 2HDM(II) analysis** within CKMfitter including modified constraints from mesons leptonic and semileptonic tree decays and loop radiative $b \rightarrow s\gamma$ decays and $Z \rightarrow bb$ partial width [Deschamps *et al.*, PRD**82**, 073012 (2010)].

Observables

 $\mathfrak{B}[B \to \tau \nu], \mathfrak{B}[D \to \mu \nu], \mathfrak{B}[D_s \to \mu \nu], \mathfrak{B}[D_s \to \tau \nu], \mathfrak{B}[K \to \mu \nu] / \mathfrak{B}[\pi \to \mu \nu]$ $\mathfrak{B}[B \to D\tau \nu], \mathfrak{B}[K \to \pi \ell \nu], \mathfrak{B}[b \to s\gamma], \Delta m_d, \Delta m_s, \Gamma[Z \to b \overline{b}] / \Gamma[Z \to \text{hadrons}]$

• Combined Fine tuned solution ruled out at 95% CL, mostly from $\Re[B \rightarrow D\tau v]$ and $\Re[K \rightarrow \mu v]/\Re[\pi \rightarrow \mu v]$ constraints.

• Only marginal improvement of the χ^2_{min} when going from SM to 2HDM(II), $\Delta \chi^2_{min} = 0.02$ which corresponds to a p-value of 89%, 0.1 σ effect, from a toy Monte-Carlo study.

 \Rightarrow We see no particular indication for a charged Higgs effect in a 2HDM Type II scheme

NP in $\Delta F=2$: Scenario III

Further assumeMinimumFlavourViolation (MFV)with large bottomYukawa coupling

 $\Rightarrow \Delta_d = \Delta_s$

Dominant constraints come from A_{SL} , ($\phi_s = -2\beta_s$, $\Delta\Gamma_s$) and $sin(2\beta)$.

All 3 measurements prefer a negative phase $arg(\Delta)$ though not with the same magnitude.

■ With 2009 Tevatron average for ϕ_s (2.8 fb⁻¹) old D0 (6.1 fb⁻¹) A_{SL}, the SM hypothesis ($\Delta = 1$) was disfavoured at 3.1 σ , from the combination of all 3 discrepancies.

NP in $\Delta F=2$: Scenario I, various Input Sets

