Hints of New Physics in the b sector?
Heavy flavour physics on the lattice
B spectrum and b quark mass
f_B decay constant
Hints of New Physics in the b sector?

V_{ub} puzzle and $(Br(B \to \tau \nu), \sin 2\beta)$ discrepancy

\[
\Gamma(B^- \to \tau \nu) = \frac{G_F^2 |V_{ub}|^2}{8\pi} f_B^2 m^2_{\tau} m_B \\
\times \left(1 - \frac{m^2_{\tau}}{m^2_B}\right)^2 \left|1 + \frac{m^2_B}{m_b m_{\tau}} C_{NP}\right|^2
\]

$\delta(f^2_B) \sim 30 \%$

\[
\langle \pi(p') |\bar{u}\gamma_{\mu}b |B(p)\rangle = \left(p_{\mu} + p'_{\mu} - q_{\mu} \frac{m^2_B - m^2_{\pi}}{q^2}\right) f_+(q^2) \\
+ q_{\mu} \frac{m^2_B - m^2_{\pi}}{q^2} f_0(q^2)
\]

\[
\Gamma(B \to \pi \nu) \propto |V_{ub}|^2 \int_{0}^{q^2_{\text{max}}} f^2_+(q^2) dq^2
\]
Hints of New Physics in the b sector?

V_{ub} puzzle and $(Br(B \to \tau \nu)), \sin 2\beta$ discrepancy

$$\Gamma(B^- \to \tau \nu) = \frac{G_F^2 |V_{ub}|^2}{8\pi} \frac{f_B^2 m_B^2 m_B}{B_m^2 m_B} \left(1 - \frac{m_B^2}{m_B^2}\right)^2 \left|1 + \frac{m_B^2}{m_B m_\tau} C_{NP}\right|^2$$

$$\delta(f_B^2) \sim 30\%$$

$$\langle \pi(p') | \bar{u} \gamma_{\mu} b | B(p) \rangle = \left(p_{\mu} + p'_{\mu} - q_{\mu} \frac{m_B^2 - m_\pi^2}{q^2}\right) f_+(q^2) + q_{\mu} \frac{m_B^2 - m_\pi^2}{q^2} f_0(q^2)$$

$$\Gamma(B \to \pi l \nu) \propto |V_{ub}|^2 \int_0^{q_{\text{max}}^2} f_+(q^2) dq^2$$

From global fits $\sin 2\beta$ and $Br(B \to \tau \nu)$ are areas of discrepancy with the SM ($\sim 3\sigma$ and $\sim 2.5\sigma$)
Heavy flavour physics on the lattice

Systematics coming from large discretisation effects ($\Lambda_{\text{Compt}} \sim 1/m_Q$).

Several strategies are proposed in the literature to deal with those cut-off effects:

- Use NRQCD to describe the heavy quark [P. Lepage and B. Thacker, '91]; though, no continuum limit when the theory is regularised on the lattice

- Define an action with counterterms that are tuned to get $O(a)$, $O(am_Q)$ and $O(\alpha_s am_Q)$ improvements [A El Khadra et al, '96]

- Computation within Heavy Quark Effective Theory, the effective couplings are determined nonperturbatively by imposing matching conditions between QCD and HQET [J. Heitger and R. Sommer, '03]
Ultraviolet divergences of HQET are absorbed in the ω coefficients, determined from a Schrödinger Functional set up (Dirichlet boundary conditions in time).

Hadronic matrix elements are extracted with a particular care to excited states (solution of the Generalised Eigenvalue problem on a matrix of correlators).
Small volume part of the strategy

\[\mathcal{L}^{\text{HQET, } 1/m} = \mathcal{L}^{\text{stat}} + \frac{m_{\text{bare}}}{m} \mathcal{O}^{c.t.} - \omega_{\text{kin}} \mathcal{O}^{\text{kin}} - \omega_{\text{mag}} \mathcal{O}^{\text{mag}} \]

\[A^{\text{HQET, } 1/m}_0 = Z_A^{\text{HQET}} [A^{\text{stat}}_0 + c_A^{(1)} A^{(1)}_0 + c_A^{(2)} A^{(2)}_0] \]

\[\mathcal{O}^{\text{kin}} = \bar{\psi}_h D^2 \psi_h \quad \mathcal{O}^{\text{mag}} = \bar{\psi}_h \sigma \cdot B \psi_h \]

\[A^{(0)}_0 = \bar{\psi}_l \gamma_0 \gamma^5 \psi_h \quad A^{(1)}_0 = \bar{\psi}_l \frac{1}{2} \gamma^5 \gamma_i (\nabla_i - \bar{\nabla}_i) \psi_h \quad A^{(2)}_0 = -\frac{1}{2} (\partial_i + \partial^*_i) A^{\text{stat}}_i \]

\[\Phi_i^{\text{QCD}}(L_1) = \varphi_{ij}^{\text{HQET}}(L_1) \tilde{\omega}_j \]

\[\Phi_{AA}(t) \equiv Z_A^2 \sum_{\bar{x}} \langle (\bar{\psi}_b \gamma_0 \gamma^5 \psi_l)(\bar{x}, t)(\bar{\psi}_l \gamma_0 \gamma^5 \psi_b)(0) \rangle \]

\[\Phi_{AA}(t) = e^{-m_{\text{bare}} t} (Z_A^{\text{HQET}})^2 \left[\varphi_{AA}^{\text{stat}}(t) + \omega_{\text{kin}} \varphi_{AA}^{\text{kin}}(t) + \omega_{\text{mag}} \varphi_{AA}^{\text{mag}}(t) + C_A^{(1)} [\varphi_{\delta A}(t) + \varphi_{\delta AA}(t)] \right] \]

Extrapolation to the continuum limit of \(\Phi_1^{\text{QCD}} \equiv "m_B" \) and \(\Phi_2^{\text{QCD}} \equiv \ln("f_B \sqrt{m_B}"") \)
Evolution of the observables through Step Scaling functions from L_1 to $L_{\text{inf}} = s^k L_1$ where long-distance physics dominates; in practice $s = 2$ and $k = 1$

\[\Phi_i(L_2) = \lim_{a \to 0} \sum_{ij}(a)\Phi_j(L_1) \]

Extrapolation to the continuum limit of $\Phi_{\text{stat}}^1(L_2)$ and $\Phi_{\text{stat}}^2(L_2)$

Extrapolation to the continuum limit of observables used to determine ω_{kin} and ω_{mag}
Suppression of excited states contribution to hadronic quantities

Contribution of excited states to correlators efficiently suppressed by solving a Generalised Eigenvalue Problem [C. Michael, '85; M. Lüscher and U. Wolff, '90] [ALPHA, B. B. et al, '09]

Compute an $N \times N$ matrix of correlators $C_{ij}^{PP}(t) = \sum_{\vec{x}, \vec{y}} \langle \Omega | T [O_{JP}^i(\vec{x}, t) O_{JP}^j(\vec{y}, 0)] | \Omega \rangle$ with $O_{JP}^i(\vec{x}, t) = \sum_{\vec{z}} \bar{q}(\vec{x}, t)[\Gamma \times \Phi(|\vec{x} - \vec{z}|)]^i_{JP} q(\vec{z}, t)$

Solve the generalised eigenvalue problem $C_{ij}^{ij}(t) v_n^j(t, t_0) = \lambda_n(t, t_0) C_{ij}^{ij}(t_0) v_n^j(t, t_0)$

$$aE_n^{\text{eff}}(t, t_0) = - \ln \left(\frac{\lambda_n(t + a, t_0)}{\lambda_n(t, t_0)} \right)$$

$$Q_n^{\text{eff}}(t, t_0) = \frac{C_{ij}^{ij}(t) v_n^j(t, t_0)}{\sqrt{v_n^i(t, t_0) C_{ij}^{ij}(t) v_n^j(t, t_0)}} \left(\frac{\lambda_n(t_0 + a, t_0)}{\lambda_n(t_0 + 2a, t_0)} \right)^{t/2a}$$

Estimate the $1/m$ corrections in HQET to static energies and matrix elements using GEVP is not an issue; it is enough to determine λ_n^{stat} and v_n^{stat}
B spectrum and b quark mass

Hadronically matrix elements extracted at 3 lattice spacings (0.05 fm, 0.065 fm, 075 fm)

Pion mass in the range [250 - 400] MeV; $Lm_\pi > 4$

m_B data well described by a linear fit in m_π^2; the NLO term in m_π^3 of HMχPT cannot be observed; quadratic fit in $z \equiv L_1 M_B$ fully satisfactory.

$$\tilde{m}_b(m_b) = 4.234(76)_{\text{stat}}(56)_{\text{renorm}}(14)_{\text{scale}} \text{ GeV}$$

Preliminary

$$\tilde{m}_b(m_b)^{N_f=2 \ TM} = 4.29(14) \text{ GeV} \ [P \ Dimopoulos \ et \ al, \ '11]$$

$$\tilde{m}_b(m_b)^{\text{sum rules}} = 4.163(16) \text{ GeV} \ [K. \ Chetyrkin \ et \ al, \ '09]$$

Interesting to compare $\tilde{m}_b(m_b)$ measured with the B spectrum with its counterpart estimated from the B_s spectrum in a partially quenched set up (need to know κ_s).
B spectrum and b quark mass

Hadron mass extracted at 3 lattice spacings (0.05 fm, 0.065 fm, 0.075 fm)

Pion mass in the range [250 - 400] MeV; \(L m_\pi > 4 \)

\[m_\pi \text{ dependence [hyp1], } a^2 \text{ cutoff effects subtracted} \]

Hyperfine mass splitting data well described by a linear fit in \(m_\pi^2 \)

Quadratic fit in \(1/z \) excellent

\[
m_{B^*} - m_B = 46.4^{(1.3)}_{(1.0)} \text{MeV in full agreement with experiment}
\]

Preliminary
B decay constant

Hadronic matrix elements extracted at 3 lattice spacings (0.05 fm, 0.065 fm, 0.075 fm)
Pion mass in the range [250 - 400] MeV; $Lm_\pi > 4$

\[f_B = 175(10)_{\text{stat}}^{(5)}_{\text{HM}}_{\chi_{\text{PT}}}(6)_{\text{scale}} \text{ MeV} \]

B decay constant data well described by a linear fit in m_π^2; however adding the NLO in $m_\pi^2 \ln m_\pi^2$ does not hurt

\[|f_B^{1/m}/f_B^{\text{stat}}| \sim 10\% \]

Preliminary
Pretty low values of $f_B \Rightarrow$ hint of NP in $B \rightarrow \tau\nu$ not in contradiction with lattice data...

Acknowledgments to J. Bulava, M. Della Morte, M. Donnellan, P. Fritzsch, N. Garron, J. Heitger, G. von Hippel, B. Leder, M. Marinkovic, S. Schaefer, H. Simma, R. Sommer, N. Tantalo, F. Virotta