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• sleptons expected to be among the lightest supersymmetric particles 

• signal: energetic lepton pair + missing energy

• for a precise prediction, big threshold logarithms need to be resummed [Bozzi, 
Fuks, Klasen 07’]. We perform resummation in the context of effective field 
theory [Becher, Neubert, Xu 07’]
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Introduction

• important role in the description of hard interactions in 
QCD [Altarelli, Ellis, Martinelli 79’]

• serves as prototype for other (Drell-Yan like) collider 
processes (production of new particles) 

Drell-Yan

slepton pair production in the context of a Supersymmetric extension of SM

[Baer, Harris, Reno 97’; Beenakker, Klasen, Krämer, Plehn, Spira, Zerwas 99’]
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Kinematics at Threshold
Differential cross section as a 
function of: z =
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hard function: virtual corrections soft function: real emission of soft 
gluons

C(z,M,mg̃,mq̃, µf ) = H(M,mg̃,mq̃, µf )S(
√
ŝ(1− z), µf ) +O(1− z) Factorizes!
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• Within effective field theory the hard and the soft function are calculated as matching 
coefficients of operators defined in SCET (Becher, Neubert, Xu, 07’)

• The resummation of threshold logarithms arising in the z→1 region can be accomplished by 
solving RG equations for the hard and soft function
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Resummation in SCET

soft function contains plus distributions of the form
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Large Logs: need to be resummed
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• The hard and the soft function in the resummed expression should be evaluated at their own 
characteristic scale

Evolution function which evolves the 
soft           and the hard           scale to a 

common factorization scale                        
µs µh

µf
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• The “pure” virtual QCD and the “pure” SUSY-QCD contributions can be distinguished at 
one loop

• The supersymmetric contribution is small compared to QCD

• Susy virtual effects would never be appreciable in the lepton invariant mass distribution of 
the usual Drell-Yan
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Fixed order result
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Choice of the matching scales
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• The matching scales         and        should be chosen such that the the perturbative expansions of the 
Wilson coefficients are well behaved

• The hard matching scale should be chosen of order M

• The soft matching scale is a dynamic scale which depends on τ and M   (it must be determined 
separately for each process)

The supersymmetric contribution has no influence on the choice of the matching 
scales

ml̃ = 150GeV mg̃ = 750GeV mq̃ = 600GeVmg̃ = 300GeV mq̃ = 300GeV

µh µs
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K factor - NLO vs Resummed
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Reduced scale uncertainty!
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Slepton pair invariant mass
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Total cross sections LHC 7 TeV

σLO [fb] 16.90+0.63
−0.63

σNLO [fb] 22.27+0.45
−0.38

σNLL [fb] 20.18+2.61
−1.43

σNNLL [fb] 22.00+0.18
−0.28

σNLO+NNLL [fb] 22.47+0.16
−0.26

MSSM point: ml̃ = 150GeV mg̃ = 750GeV mq̃ = 600GeV

MSTW 2008 pdf used, 
LO, NLO, NNLO

Resummed and matched results with errors combined in 
quadrature

Preliminary!
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• We calculated Slepton pair production considering the susy virtual effects and 
resumming threshold soft gluons to NNLL accuracy by means of effective field 
theory methods

• “Purely” supersymmetric corrections are small, therefore difficult to observe in 
the Drell-Yan invariant mass distribution

• We provided the results for the slepton pair invariant mass distribution and the 
total cross section at NLO + NNLL accuracy

• Resummation stabilize the result by reducing the scale dependence of the cross 
sections. It has a small impact (few percent) on the total cross section

11

Conclusions
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• The threshold contributions are enhanced near the kinematic limit                  and hence                                                                 
is near 1

• The relevance of the threshold region is due to the steeply falling behavior of the parton 
luminosity function
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Factorization at threshold

hard-scattering kernel factorizes: 

hard function: virtual corrections soft function: real emission of soft 
gluons

C(z,M,mg̃,mq̃, µf ) = H(M,mg̃,mq̃, µf )S(
√
ŝ(1− z), µf ) +O(1− z)

τ ∼ 1 z ≥ τ
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Resummation Effect
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Table 1: Different approximation schemes for the evaluation of the resummed
cross-section formulae

RG-impr. PT Log. approx. Accuracy ∼ αn
s Lk Γcusp γV , γφ CV , s̃DY

— LL k = 2n 1-loop tree-level tree-level

LO NLL 2n − 1 ≤ k ≤ 2n 2-loop 1-loop tree-level

NLO NNLL 2n − 3 ≤ k ≤ 2n 3-loop 2-loop 1-loop

NNLO NNNLL 2n − 5 ≤ k ≤ 2n 4-loop 3-loop 2-loop

×
z−η

(1 − z)1−2η
s̃DY

(
ln

M2(1 − z)2

µ2
sz

+ ∂η, µs

)
e−2γEη

Γ(2η)
, (50)

where η = 2aΓ(µs, µf), and we have defined the evolution function

U(M, µh, µs, µf) =

(
M2

µ2
h

)−2aΓ(µh,µs)

exp
[
4S(µh, µs) − 2aγV (µh, µs) + 4aγφ(µs, µf)

]
. (51)

As before, equation (50) is valid for η > 0 (µs > µf). For negative η (µf > µs), integrals of
lnn(1 − z)/(1 − z)1−2η with test functions f(z) must be defined using a subtraction at z = 1
and analytic continuation in η.

We emphasize that the result (50) is formally independent of the scales µh and µs, at which
the matching conditions for the hard and soft functions are evaluated. On the other hand,
the hard-scattering kernel C does depend on the factorization scale µf , at which the PDFs
are renormalized. In practice, a residual dependence on the matching scales arises when the
perturbative expansions of the matching coefficients and anomalous dimensions are truncated,
and this dependence can be used to estimate the remaining perturbative uncertainties. Setting
the three scales µh, µs, and µf equal to each other in the resummed expression (50), one can
readily reproduce the leading singular terms for z → 1 in the fixed-order perturbative QCD
expression for the hard-scattering kernel. In this way we have obtained the two-loop corrections
in (9).

The final expression (50) for the hard-scattering kernel can be evaluated at any desired
order in resummed perturbation theory. Table 1 shows what is required to obtain different
levels of accuracy. In this work we adopt the counting scheme of RG-improved perturbation
theory, where at LO one includes all O(1) terms, at NLO one includes all O(αs) terms, etc. The
large logarithm ln(µh/µs) is counted like O(1/αs). In the literature on threshold resummation
the alternative notation Nn+1LL is often used instead of NnLO. The leading logarithmic (LL)
approximation is listed only for completeness, as it misses some O(1) terms.

In the following section we will perform a detailed numerical analysis of the Drell-Yan cross
section and rapidity distribution. In most cases of phenomenological relevance the invariant
mass of the Drell-Yan pair will be small compared with the center-of-mass energy, i.e. τ =
M2/s & 1. Nevertheless, it is interesting to briefly consider the limit τ → 1, in which the need

18

Log. accuracy table

for Sudakov problems the counting of 
logarithms is done in the exponent!

(Becher, Neubert, Xu, 07’)
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FIG. 2: Vertex correction to the scattering amplitude in the
full theory.

21

34

FIG. 3: Vertex correction in SCET.

particle can be written as

pµ
i =

1

2
nµ

i (n̄i · pi) +
1

2
n̄µ

i (ni · pi) + pµ
i,⊥. (3)

If ni is chosen to be exactly along the direction of pi, then
pµ

i,⊥ = 0. The particles are energetic, with n̄i · pi ∼ Q.
In the case of only two energetic particles, one can work
in the Breit frame where the particles are back-to-back,
with n̄1 = n2 and n̄2 = n1, so that one only deals with
two null vectors n1 and n̄1, conventionally called n and
n̄.

Consider a radiative correction graph to the tree-level
process Fig. 1, such as the vertex correction shown in
Fig. 2 in the full theory. The gauge boson exhanged
between the two fermion lines still has virtuality of or-
der Q2, and so the diagram behaves like the graph in
Fig. 3, with the highly virtual gauge boson shrunk to a
point. As is well-know, there are several different mo-
mentum regions which contribute to the loop integral
in Fig. 2. If the components of the gauge boson loop
momentum are of order Q, then the gauge boson has
virtuality of order Q2. This contribution is not present
in SCET, and is included in the one-loop matching co-
efficients at the scale Q. The other regions, which are
included in SCET, are when the gauge boson is collinear
to particle 1 (n1-collinear gauge boson), to particle 2 (n2-
collinear gauge bosons), or is ultrasoft. The SCET the-
ory thus contains ni-collinear gauge bosons for each par-
ticle direction, i = 1, . . . , r, with momenta scaling like
pi, denoted by Ani,pi

with labels, as well as ultrasoft

gauge bosons denoted by A, with no labels, which couple
to all the particles, analogous to the soft and ultrasoft
fields introduced in NRQCD [28]. We work in the regime
where the kinematic variables such as s, t are of order
Q2, and the invariant masses of the final states are much
smaller than Q2. The SCET power counting parameter
is λ = M/Q. The formalism is valid for observables that
can be constructed out of variables in the effective the-
ory, for which the reduction to effective theory vertices
such as in Fig. (3) is valid. In particular, it is valid for
jet observables and top decay observables at the LHC.

Notation: We use the abbreviations

LM = log
M2

µ2
, Lm = log

m2

µ2
, LQ = log

Q2

µ2

Ls = log
−s

µ2
, Lt = log

−t

µ2
, Lu = log

−u

µ2

Ls/t = log
s

t
= log(−s) − log(−t),

Lt/u = log
t

u
= log(−t) − log(−u),

Lut/s2 = log
ut

s2
= log(−u) + log(−t) − 2 log(−s). (4)

For scattering kinematics, s > 0, t < 0, and u < 0.
All logarithms arise in the form log(−x − i0+) for x =
s, t, u, so that log(−s − i0+) = log s − iπ. Similarly,
Ls/t = log(−s) − log(−t) = log(−s/t) − iπ, and Lt/s =
log(−t) − log(−s) = log(−t/s) + iπ. This procedure can
be used to find the branch cut of logarithms with negative
argument which occur in the subsequent formulæ.

III. EXPONENTIATION AND LOG-COUNTING

The exponentiation properties of Sudakov logarithms,
and the relation between the renormalization group re-
sults and those obtained by exponentiating fixed order
computations was discussed in CGKM2. This section sum-
marizes the results we need for our standard model cal-
culation.

The scattering amplitude A has an expansion of the
form1

A =





1

αL2 αL α

α2L4 α2L3 α2L2 α2L α2

α3L6 . . .

...





(5)

1 For multi-particle scattering, A is actually a matrix of ampli-
tudes, and matrix ordering is important. We discuss the simpler
case of the Sudakov form factor, where A is a number. This is
sufficient to study the exponentiating and log power-counting we
need. The matrix case is discussed in Sec. VI.

(Chiu, Kelley, Manohar, 08’)

Logaritmic structure

Logaritmic structure of the scattering amplitude 
for Sudakov problems
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