EPS-HEP-2011 Grenoble July 21 – July 27, 2011

Quarkonium production at LHCb

Zhang Yanxi On behalf of the LHCb collaboration

Tsinghua university, Beijing yanxi.zhang@cern.ch

Outline

- Detector overview
- $\psi(2s)$ production
- χ_{c1} , χ_{c2} cross section ratio measurement
- Exclusive dimuon production (poster (ID 419) by Tara)
- $\Upsilon(1S)$ production
- χ_b observation at LHCb
- X(3872) production and mass measurement
- X(4140) search at LHCb

All results are preliminary

LHCb detector

- Forward region spectrometer ($1.9 < \eta < 4.9$), 4% solid angle, 40% b-hadron cross section
- Excellent tracking: PV resolution $\sigma_{xy} \sim 15 \mu m$, $\sigma_z \sim 75 \mu m$, $\epsilon > 90\%$ for tracks above few GeV, B mass resolution ~ 20 MeV
- Excellent particle identification, π/K separation over 2-100GeV, hadron mis-ID to μ ~2%
- Efficient triggers: low $p_{\rm T}$ lepton and γ , hadron thresholds 7/22/2011 EPS-HEP 2011

Data taking 2010/2011

LHCb 2010 luminosity

- ✓ overall data taking efficiency ~90%
 ✓ ~37pb⁻¹ integrated luminosity
- \checkmark with all sub detectors fully operational

Most of the analyses based on 2010 data

LHCb expects to collect 1 fb⁻¹ in 2011 ✓ ~390pb⁻¹ recorded already ✓ analysis updated with new data

The X(4140) analysis includes 2011 data

7/22/2011

$\psi(2S)$ production cross-section

No feed down from higher states, cleaner in theory

 $\frac{d\sigma}{dp_T}(p_T) = \frac{N_{\psi(2S)}(p_T)}{\mathcal{L}_{int} \epsilon(p_T) \mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-) \mathcal{B}(J/\psi \to \mu^+\mu^-) \Delta p_T}$ Both $\mu\mu$ mode and $J/\psi\pi\pi$ mode used μµ mode $J/\psi\pi\pi$ mode MeV/c² ్చ 6000 55000 LHCb 2010 preliminary LHCb 2010 preliminary s = 7 TeV s = 7 TeV ts/[2.0 | 0005 **0**¹ 50000 /ents Ldt = 34.9 pb Ldt = 33.8 pb⁻¹ 45000 ັ້ 4000 40000 3000 35000 2000 30000 $N_s = 11234 \pm 174$ 1000 $N_s = 89374 \pm 718$ 25000 3650 3660 3670 3680 3690 3700 3710 3720 3730 3740 3700 3750 3900 3550 3600 3650 3800 3850 M_{uu} (MeV/c²) b/GeV/c] <u>d²σ</u>(ψ(2S)) (nb/GeV/c) dp_dy_____ 10 LHCb 2010 preliminar s = 7 TeV Ldt = 33.8 pb LHCb 2010 data $2.5 \le v \le 3.0$ 3.0<v<3.5 3.5<v<4.0 LHCb 2010 preliminar √s = 7 TeV Ldt = 34.9 pb 8 10 12 14 16 p_r[GeV/c] 10 12 p_ (GeV/c) double differential cross section in y and $p_{\rm T}$ differential cross section in $p_{\rm T}$

χ_{c1} , χ_{c2} cross section ratio study

 $\chi_c \rightarrow J/\psi \gamma$: converted γ (e⁺e⁻ clusters) and not converted γ (γ cluster) treated separately

Yields from fit to $\chi_c J/\psi$ mass difference

χ_{c1} , χ_{c2} cross section ratio study (cont.)

Results in J/ ψ *p*_T **bins**

Internal error bars: statistical error from the yield extraction External error bars: systematic uncertainty included ✓ decay branch fractions ✓ stability of fit ✓ MC statistics Shaded area (black): maximum effect of unknown polarization Shaded area (red/blue): theory prediction

The NRQCD also used for the $\psi(2S)$ cross section prediction.

Data and theory not consistent at mid and low $p_{\rm T}$!

$\Upsilon(1S)$ production measurement

$\Upsilon(1S)$ production measurement

Observation of χ_b

 χ_b constructed from $\Upsilon(1S)$ and photon

~37pb⁻1 LHCb 2010 data

Photon energy measured by calorimeter

7/22/2011

NEW

X(3872) production/mass measurement

1600 F

LHCb

Preliminary

- Exotic meson, internal structure uncertain, precise mass crucial
- At LHCb reconstructed mass calibrated by scaling the track momentum

Decay	Measured mass $[MeV/c^2]$	PDG average $[MeV/c^2]$
$\Upsilon(1S) \rightarrow \mu^+ \mu^-$	9459.90 ± 0.54	9460.30 ± 0.26
$J/\psi \to \mu^+\mu^-$	3096.97 ± 0.01	3096.916 ± 0.011
$D^0 \to K^- \pi^+$	1864.75 ± 0.07	1864.83 ± 0.14
$K_{\rm S}^0 \to \pi^+ \pi^-$	497.62 ± 0.01	497.61 ± 0.02

checked by control channel: $\psi(2S) \rightarrow J/\psi \pi \pi$ 3686.12 ±0.06 MeV (LHCb calibrated) 3686.09 ±0.04 MeV (PDG)

~35 pb⁻¹ 2010

X(3872) production/mass measurement

Statistics limited, weight every event by $1/\epsilon(p_T,y)$. Fiducial region: 2.5<y<4.5, 5< p_T <20 GeV/c

Signal distribution is modeled by Gaussian convoluted with Breit-Wigner $\Gamma_{BW} \equiv 1.3$ MeV(from CDF)

Efficiency corrected yield :

 $\frac{N_{X(3872)}}{\varepsilon_{\text{tot}}^{\text{MC}}} = (9.5 \pm 2.2) \times 10^3$

 $\sigma_{X(3872)} \times \mathcal{BR}(X(3872) \to J/\psi \pi^+ \pi^-) = 4.74 \pm 1.10(\text{stat}) \pm 1.01(\text{syst}) \text{ nb}$

Systematic uncertainties:

Polarization: 1.4% Mass resolution: 1.3% Tracking efficiency: 16% Decay Width (Γ_{BW}): 12% Track quality cuts: 2% Vertex quality cut: 3% Trigger: 5% Luminosity: 3.5%

NEW

CDF observed structure $(J/\psi\phi)$ in B⁺ $\rightarrow J/\psi\phi K^+ (\phi \rightarrow K^+K^-)$ decay

B+: 115±12 events

LHCb $B^+ \rightarrow J/\psi \phi K^+ (\phi \rightarrow K^+K^-)$

2010+2011, ~0.4fb⁻¹

B+: 381 ± 22 events

Tight J/ ψ and ϕ mass cut

NEW

X(4140) search (cont.)

Description of $M(J/\psi\phi)$ - $M(\phi)$:

Signal: Breit-Wigner convoluted with resolution mass width fixed to CDF **Background**:

•Many quarkonium states emerged with huge statistics and good quality in LHCb 2010 data

 $\cdot\psi(2S)$ production cross section measured in agreement with NRQCD prediction

- χ_{c1} , χ_{c2} cross section ratio disagrees with theory at mid p_{T}
- $\Upsilon(1S)$ cross section measured at LHCb
- χ_b is observed at LHCb
- X(3872) mass measured in agreement with PDG value, cross section also given
- •LHCb does not confirm the CDF X(4140)

backup slides

7/22/2011

X(4140) search

CDF branch fraction

FPS-HFP 2011

CDF observed a narrow structure $X \rightarrow J/\psi \phi$ in $B \rightarrow J/\psi \phi K$ decay

LHCb study the same channel, selection and method also used to look for $B_c \rightarrow J/\psi \pi \pi \pi$

 $282 \pm 18 \text{ B} \rightarrow J/\psi \phi \text{K}$ events

Fit on $J/\psi\phi$ and J/ψ mass difference two background shape models used:

3-body phase space background: 7.5^{+5.2}_{-4.3} (CL=3.5%)

quadratic polynomial: prefer 0 (CL=13%) $Br(B \to X(4140)K) / Br(B \to J / \psi \phi K) < 0.03 @ 90\% C.L.$ While CDF result:

$0.149 \pm 0.039 \pm 0.024$

 3σ disagreement

arXiv: 1101.6058

C)

b)

We cannot confirm X(4140) existence

 $BR(B^+ \rightarrow X(4274)K^+, X(4274) \rightarrow J/\psi\phi) / BR(B^+ \rightarrow J/\psi\phi K^+) < 0.08$ (90% C.L.)