NA61/SHINE experiment: ion program

SHINE -SPS Heavy Ions and Neutrino Experiment

Roman Płaneta Jagiellonian University, Kraków

for the NA61/SHINE collaboration

134 physicists from 27 institutes and 15 countries

NA61/SHINE experiment

NA61/SHINE physics program:

- Critical Point and Onset of Deconfinement,
- Neutrino physics,
- Cosmic-ray physics

Detector

TPC read-out - an increase of the data rate by a factor of 10 compared to the NA49 rate TOF-F detector - acceptance X 2 Projectile Spectator Detector - with a resolution of 1 nucleon He beam pipe - reduction of the δ -electron background by a factor of 10

Particle identification: Combined energy loss and Time of Flight measurements

Physics of strongly interacting matter

- QCD considerations suggest a 1st order phase boundary ending in a critical point
- hadro-chemical freeze-out points are obtained from stastistical model fits to measured particle yields
- \bullet T and μ_{B} approach phase boundary and estimated critical point at SPS
- evidence of onset of deconfinement from rapid changes of hadron production properties
- search for indications of the critical point as a maximum in fluctuations

Evidence for the onset of deconfinement

Onset of Deconfinement: early stage hits transition line, predicted & observed signals: kink, horn, step

SMES model, M.Gazdzicki and M.Gorenstein, Acta Phys. Pol.30,2705(1999) M.Gazdzicki et al.,arXiv:1006.1765

the kink

the horn

NA49,C.Alt et al.,PRC77,024903(2008)

nergy

the step

 μ_{B}

Verification of the NA49 results by STAR and ALICE

- The RHIC results confirm the NA49 measurements at the onset of deconfiment
- The LHC data demonstrate that the energy dependence of hadron production properties shows rapid changes only at low SPS energies

Results of critical point search from NA49

Ion physics program of NA61/SHINE: scan in energy and system size

Progress and plans in data taking for CP&OD

NA61 preliminary results on p+C collisions

Pion spectra at 31 GeV/c (arXiv:1101.3250 and (A. Aduszkiewicz and T. Palczewski, Thu. P153)

Comparison between p+C (NA61) and central Pb+Pb (NA49) at 30A GeV

- Mean pion multiplicity is approximately proportional to the mean number of wounded nucleons in the projectile nucleus
- Precise data on p+A add significant constrains for models

NA61 preliminary results on p+C collisions

Pion spectra at 31 GeV/c (arXiv:1101.3250 and (A. Aduszkiewicz and T. Palczewski, Thu. P153)

Comparison between p+C (NA61) and central Pb+Pb (NA49) at 30A GeV

- p + C convex form (with respect to the coresponding exponential fit) of the transverse mass spectrum
- Pb + Pb –concave spectrum
- significant colective flow in Pb + Pb collisions

Summary

- verification of NA49 results on the onset of deconfinement by STAR and ALICE
- search for critical point of strongly interacting matter presently inconclusive
- 2D scan of fluctuations in μ_B, T phase diagram was started by NA61/SHINE with p+p interactions at six momenta (13-158 GeV/c)
- □ first results are being released
- energy scan with secondary Be beam will start this year

Additional slides

PSD – Projectile Spectator Detector (completion for 2012)

- · 60 lead/scintillator sandwiches
- 10 longitudinal sections
- 6 WLS-fiber/MAPD
- 10 MAPDs/module
- 10 Amplifiers with gain~40

Fig1Fionview#reFSDomoirgdeform

Fluctuation measures studied by NA49

- scaled variance ω of the multiplicity distribution P(N)

$$\omega = \frac{Var(N)}{} = \frac{ - ^2}{}$$

superposition model: $\omega(A+A)=\omega(N+N)+\langle N\rangle\omega_{part}$ independent particle emission: $\omega = 1$ ω affected by participant fluctuations

- Φ_x measure of fluctuations of observable x (<p_{PT}>, < Φ >, Q, identity, ...)

$$\Phi_x = \sqrt{\frac{\langle Z^2 \rangle}{\langle N \rangle}} - \sqrt{\langle z^2 \rangle}; \quad z = x - \langle x \rangle, \quad Z = \sum_{i=1}^N (x_i - \langle x \rangle)$$

superposition model: $\Phi_x(A+A) = \Phi_x(N+N)$ independent particle emission: $\Phi_x = 0$ Φ_x strongly intensive fluctuation measure

- σ_{dyn} measure of particle ratio fluctuations (K/ π , p/ π , K/p)

$$\sigma_{dyn} = \operatorname{sign}(\sigma_{data}^2 - \sigma_{mix}^2) \sqrt{|\sigma_{data}^2 - \sigma_{mix}^2|} ; \quad \sigma_{dyn}^2 = |v_{dyn}|$$

E-by-E fit of particle multiplicities required mixed events used as reference intensive fluctuation measure

Secondary Be beam: basic idea

Test of secondary ion beams

Secondary Be beam: fragment separator

H2 Beam Line for Fragmented Ion Beam

Ion beams for NA61

QCD critical point searches – future experimental landscape

partly complementary programs planned at CERN SPS 2011 BNL RHIC 2010 DUBNA NICA 2015 ? GSI SIS-CBM 2017 ?

strong points of NA61:

- tight constraint on spectators
- high event rate at all SPS energies
- flexibility to change A and energy

Strong points of BNL/STAR:

- full uniform azimuthal acceptance
- excellent TOF identification
- low track density