Z+jets Results from CDF

Lorenzo Ortolan IFAE - Barcelona

On behalf of CDF collaboration

Motivation

- Test of pQCD prediction
- Background to many searches for new physics
- test/tune difference MC models
- Large theoretical uncertainties

Dedicated measurements on Z+jets crucial

TeVatron

- p \bar{p} collisions at $\sqrt{s} = 1.96$ TeV
- peak of instantaneous luminosity $\sim 4 \cdot 10^{32} \ cm^{-2}s^{-1}$
- $\blacktriangleright \geq 10 \ fb^{-1}$ of delivered luminosity

(日)

3

Collider Detector at Fermilab

Z+ jets cross section measurement

Z + jets Measurement definition

- Leptons
 - Electrons
 - $E_T^l \ge 25 \ GeV/c$
 - $|\eta'| \leqslant 1.0$
 - ▶ $1.2 \leqslant |\eta_2^e| \leqslant 2.8$
 - Muons
 - $p_T^l \ge 25 \ GeV/c$ • $|\eta^l| \le 1.0$
- Z Boson
 - ▶ 66 $\leq M_Z \leq 116 \ GeV/c^2$
- Jets
 - Midpoint algorithm
 - $\Delta R_{cone} = 0.7$
 - $p_T^{jet} \ge 30 \ GeV/c$
 - $|Y^{jet}| \leq 2.1$

Bkg calculated with MC and data driven technique ($\leq 10\%)$

Unfolding

- Calorimeter jets are unfolded back to hadron level jets
- Account for resolution effects
- Account for detector acceptance of $Z \rightarrow l^+ l^-$ reconstruction
- Bin by bin unfolding for each distribution
- Alpgen + Pythia MC

$$U = \frac{(\text{Hadron level jets} - \text{Kinematic } Z \rightarrow l^+l^-)}{(\text{Calorimeter jets} - \text{Reconstructed } Z \rightarrow l^+l^-)}$$

NLO prediction

- NLO pQCD prediction MCFM J.Campbell, R.K.Ellis: Phys.Rev.D 65:113007(2002)
- PDF set CTEQ6.1M
- Renormalization and factorization scale $\mu_0 = \sqrt{M_Z^2 + P_T^2(Z)}$
- ► Parton level cross sections are corrected to hadron level for non-pQCD contributions → Underlying Event and fragmentation

 $C_{Had} = \frac{(\text{Hadron level jets with Underlying Event})}{(\text{Parton level jets without Underlying Event})}$

Systematic uncertainties

- ▶ Jet Energy Scale 3 15%
- Data driven backgrounds 1 - 5%
- Monte Carlo backgrounds 1 - 3%
- Trigger and Lepton ID efficiencies 2%
- Vertex acceptance < 0.1%

Uncertainties on the theoretical prediction

- PDF (Hessian method)
- Dependence on μ_0 scale

 $Z_{\mu\mu}$ + jets Results with 6 fb^{-1}

Inclusive jet p_T CDF Run II Preliminary 10 - CDF Data L = 6.03 fb dơ/dp_T [fb/(GeV/c)] Sytematic uncertainties - NI O MCEM CTEO6 1M 10 Corrected to hadron level $\mu_0^2 = M_7^2 + p_T^2(Z), R_{ann} = 1.3$ $\mu = 2\mu_n$; $\mu = \mu_n/2$ PDF uncertainties 10 $Z/\gamma^*(\rightarrow \mu^+\mu^-) + \ge 1$ jet inclusive $p_{jet}^{jet} \ge 30 \text{ GeV/c}, |Y^{jet}| \le 2.1$ 10⁻¹ 1.2 Data / Theory 0.8 0.6 200 p_T^{jet} [GeV/c] 100 30

Inclusive jet Rapidity CDF Run II Preliminary - CDF Data L = 6.03 fb⁻¹ ₽ 350 Sytematic uncertainties NLO MCFM CTEQ6.1M dơ/d|y|^{jet} 300 Corrected to hadron level $\mu_0^2 = M_Z^2 + p_T^2(Z), R_{sep}=1.3$ $\mu = 2\mu_{0}; \mu = \mu_{0}/2$ 250 PDF uncertainties 2000 1500 $Z/\gamma^*(\rightarrow \mu^*\mu^*) + \ge 1$ jet inclusive $p_T^{jet} \ge 30 \text{ GeV/c}, |Y^{jet}| \le 2.1$ 1000 1.2 Data / Theory 0.6 2.2 |y^{jet}|

Z_{ee} + jets Results with 6 fb^{-1}

Z + b - jets cross section measurement

$Z\,+\,b\mbox{-jets}$ Measurement definition

- Measure $\frac{\sigma(Z+b)}{\sigma(Z)}$ and $\frac{\sigma(Z+b)}{\sigma(Z+jet)}$ to reduce systematic uncertainties
- $Z \rightarrow I^+ I^-$, where I could be muon or electron
- ► Improve muon identification efficiency with ANN ⇒ 30 % gain in Z acceptance

jets

Midpoint algorithm

•
$$\Delta R_{cone} = 0.7$$

•
$$p_T^{\text{jet}} \ge 20 \text{ GeV}/c$$

$$|Y^{jet}| \leq 1.5$$

b identification

- Secondary Vertex Tagger
- Extract b-jet composition from a fit to Secondary Vertex Mass

Z + b-jets Results with 8 fb^{-1}

Main Systematic uncertainty due to vertex mass template modeling (~ 9%). Other systematics coming from b tag efficiency, JES and backgrounds.

	Measured	NLO $Q^2 = m_Z^2 + p_{T,Z}^2$	NLO $Q^2 = \langle p_{T,jet}^2 \rangle$
$\frac{\sigma(Z+b)}{\sigma(Z)}$	$2.84 \pm 0.29 \pm 0.29 \times 10^{-3}$	$2.3 imes10^{-3}$	$2.8 imes10^{-3}$
$\frac{\sigma(Z + b)}{\sigma(Z + jet)}$	$2.24 \pm 0.24 \pm 0.26 \times 10^{-2}$	$1.8 imes10^{-2}$	$2.2 imes 10^{-2}$

Conclusions

Z+jets differential cross sections measured with 6 fb^{-1} of data in electron and muon channel.

- measurements found in agreement with NLO prediction
- working on electron/muon combination and distributions in the 3 jet multiplicity

Z+b-jet cross section measurement was performed respect to inclusive Z cross section and Z+jet cross sections with 8 fb^{-1} :

- measurements in agreement with NLO prediction
- \blacktriangleright reduced the uncertainty from previous measurements to $\sim 15\%$

Back up

EPS Grenoble - July 22, 2011

・ロト・日本・日本・日本・日本・日本

Lorenzo Ortolan - Z + jets at CDF

Z+jets results

Inclusive jet Rapidity

Z+jets results

Inclusive jet Rapidity

Z+jets results

Inclusive jet Multiplicity

EPS Grenoble - July 22, 2011

20

Table of Systematics for Z+b-jet cross section

Systematic	$rac{\sigma(Z+b)}{\sigma(Z)}$
JES	1.7%
b-tag $\epsilon\epsilon$	5.2%
Template modeling	8.8%
Backgrounds	0.8%

Muon Identification with ANN

3 Data driven samples

Real Muons

Tight selection muons from $Z \rightarrow \mu \mu$

- Backgrounds
 - from W+jet samples
 - from Same Charge muon pairs
- ▶ ANN Selection optimized the significance on inclusive $Z \rightarrow \mu^+ \mu^-$ signal
- Muon ID efficiency is ~ 97% and gain 30 % in Z acceptance.

SecVtx Tagger Mistag

SecVtx Tagger Efficiency

