Hadron physics at KLOE and KLOE-2

P.Gauzzi

Dipartimento di Fisica

(Universita' La Sapienza e INFN – Roma) for the KLOE / KLOE-2 Collaborations Istituto Nazionale di Fisica Nucleare

EPS HEP 2011 22 July 2011 – Grenoble

- **DAΦNE**
- KLOE / KLOE-2
- Recent results on Hadron Physics:
 - $\eta \rightarrow \pi^+ \pi^- \gamma$
 - $-\eta \rightarrow e^+e^-e^+e^-$
 - Search for dark forces $(\phi \rightarrow \eta e^+ e^-)$
 - $-\gamma\gamma$ physics:
 - γγ→η
 - $\gamma\gamma \rightarrow \pi^0\pi^0$
- Conclusions

1200

1000

800

600

400

- Frascati φ-factory: *e*⁺*e*⁻ collider @ $\sqrt{s} \approx 1020 \text{ MeV} \approx M_{\phi}$; $\sigma_{\text{peak}} \approx 3.1 \,\mu b$
- •Best performances in 2005:
 - $L_{\text{neak}} = 1.4 \times 10^{32} \,\text{cm}^{-1}\text{s}^{-1}$
 - $\int Ldt = 8.5 \text{ pb}^{-1}/\text{day}$
- KLOE: 2.5 fb⁻¹ @ $\sqrt{s}=M_{\phi}$ ($\Rightarrow 8 \times 10^{9} \phi$ produced) + 250 pb⁻¹off-peak @ $\sqrt{s}=1000$ MeV
- DAΦNE upgrade: New interaction scheme implemented, large beam crossing angle + crabbed waist optics
- \Rightarrow Luminosity increase expected: factor ~ 3 $\int Ldt \approx 1 \text{ pb}^{-1}/\text{hour}$
- DAΦNE commissioning will restart in **October 2011**

(see D.Moricciani's talk–Detector R&D session)

- Study of the box anomaly: test of ChPT and its unitarized extensions
 [Benayoun et al. EPJC31(2003)525; Holstein, Phys. Scripta, T99(2002)55;
 Borasoy, Nissler, NPA740(2004)362, Picciotto PRD45(1992)1569]
- Sizeable effect of the Contact Term expected both in $\Gamma(\eta \rightarrow \pi^+ \pi^- \gamma)$ and in the $M_{\pi\pi}$ distribution

• CLEO result (2007) is $2-3 \sigma$ lower than previous measurements

value	events	author	year
0.203 ± 0.008	PDG average		
$0.175 \pm 0.007 \pm 0.006$	859	Lopez	2007
0.209 ± 0.004	18 k	Thaler	1973
0.201 ± 0.006	7250	Gormley	1970

 $\Gamma(\eta \rightarrow \pi^+ \pi^- \gamma) / \Gamma(\eta \rightarrow \pi^+ \pi^- \pi^0)$

- Theoretical predictions: BR ~ 2.4 2.6 ×10⁻⁵
- BR < 6.9×10⁻⁵ @90%C.L. (CMD-2, 2001) BR < 9.7×10⁻⁵ @90%C.L. (WASA, 2008) (2 evts, with 1.3 bckg)
- Data sample: 1.7 fb⁻¹
- MC simulation according to Bijnens and Persson [hep-ph/0106130]
- e^+e^- pairs from photon conversions in the beam pipe and Drift Chamber wall rejected
- Fit with signal + background from continuum ($e^+e^- \rightarrow e^+e^-\gamma$ with γ conversion)

 $=(2.4\pm0.2_{stat}\pm0.1_{syst}) imes10$ $ightarrow e^+e^-e^+e^-$

eps HEP 2011 – 22 and end by PLB [arXiv:1105.6067]

Search for dark forces

• Recent astrophysical observations (PAMELA, ATIC, INTEGRAL, DAMA/LIBRA) can be interpreted by assuming the existence of a light dark sector that interacts with SM particles through a mixing of a new gauge boson, U with *O*(1 GeV) mass, with the photon

[Arkani-Hamed et al. PRLD79(2009), 015014 Essig et al., PRD80(2009)015003]

• If the mixing parameter $\varepsilon \sim 10^{-3} - 10^{-4} \Rightarrow$ could be observable at KLOE

 $535 < M_{miss}(ee) < 560 \text{ MeV}$

- Signature: $\phi \rightarrow \eta U, U \rightarrow \ell^+ \ell^-$
 - $\Rightarrow \phi \rightarrow \eta e^+ e^- \quad \eta \rightarrow \pi^+ \pi^- \pi^0$
- Main bckg: Dalitz decay
- Analyzed sample: 1.5 fb⁻¹
- Best $\pi^+\pi^-\gamma\gamma$ match to the η mass

~14000 $\phi \rightarrow \eta e^+ e^- (\eta \rightarrow \pi^+ \pi^- \pi^0)$ candidates

P.Gauzzi

- KLOE: no e^{\pm} tagging $\Rightarrow \sqrt{s} = 1$ GeV
- KLOE-2: $\sqrt{s} = M_{\phi} \Rightarrow$ Tagger is essential to reduce the background from the ϕ and to close the kinematics

γγ→η

 $e^+e^- \rightarrow \eta \gamma \rightarrow \pi^+\pi^-\pi^0 \gamma$

 $e^+e^- \rightarrow e^+e^-\gamma$

⊓signal

- Data sample: 240 pb⁻¹ off-peak ($\sqrt{s} = 1 \text{ GeV}$)
- Main bckg: $e^+e^- \rightarrow \eta \gamma$ with γ lost
- $\gamma\gamma \rightarrow \eta; \eta \rightarrow \pi^+\pi^-\pi^0$
- Fit to η longitudinal momentum (p_L) and missing mass (M_{miss})

 \Rightarrow 650 signal events

- $e^+e^- \rightarrow \eta\gamma \rightarrow \pi^+\pi^-\pi^0\gamma$: 3 photons + 2 tracks
 - pion ID
 - kinematic cuts to suppress background from kaons
 - kinematic fit

 $\sigma(e^+e^- \to \eta\gamma, 1 \text{ GeV}) = (0.866 \pm 0.009 \pm 0.093) \text{ nb}$

- $e^+e^- \rightarrow e^+e^- \pi^0\pi^0$
- 240 pb⁻¹ off-peak ($\sqrt{s} = 1$ GeV)
- Selected sample: 4 prompt photons
- Excess of events with respect to background in the low mass region
- $\gamma\gamma \rightarrow \pi^0 \pi^0$ cross-section evaluation in progress

8090 events after

4γ invariant mass distribution

KLOE-2: $O(10 \text{ fb}^{-1})$ at $\sqrt{s} = M_{\phi}$ with e^{\pm} tagging $\Rightarrow 2\%$ statistical accuracy using the same energy bin as Crystal Ball (~20% error)

Conclusions

KLOE published more than 20 papers on hadron physics (scalar mesons, η / η' decays, hadronic cross section, ...)

(see G.Venanzoni's talk tomorrow - Top and EW Physics session)

- KLOE is continuing to exploit the high statistics samples of light mesons collected at DAΦNE to perform precision measurements in hadron spectroscopy and to look for very rare decays
- KLOE-2: > 20 fb⁻¹ in the next 3 4 years
 Rich program of measurements in hadron physics [Eur.Phys.J.C68(2010),619]
 - study of $\eta~$ and $\eta'~$ decays
 - η / η' mixing
 - search for dark forces
 - γγ processes at $\sqrt{s} = M_{\phi}$ (with the *e*[±] taggers): Γ(π⁰→γγ), Pγγ transition form factors, search for the σ(600)

⇒ KLOE-2 is ready to start a new data-taking

P.Gauzzi

EPS HEP 2011 – 22 July 2011

Spare slides

P.Gauzzi

EPS HEP 2011 – 22 July 2011

KLOE-2 physics program

Goal: ~20 fb⁻¹ in the next 3 – 4 years to extend the KLOE physics program

Eur. Phys. J. C68(2010)619

- γγ physics
- Light meson spectroscopy

Kaon physics

- Dark matter searches
- Hadronic cross section P.Gauzzi

- Existence (and properties) of $\sigma(600)$
- Study of $\Gamma(S/P \rightarrow \gamma \gamma)$
- P transition form factor
- Properties of scalar/vector mesons
- Rare η decays
- η' physics
- Test of CPT (and QM) in correlated kaon decays
- Test of CPT in K_S semileptonic decays
- Test of SM (CKM unitarity, lepton universality)
- Test of χPT (K_S decays)
- Light bosons @ O(1 GeV)
- $\alpha_{em}(M_Z)$ and $(g_{\mu}-2)$ EPS HEP 2011 – 22 July 2011

From KLOE to KLOE-2

- Two step upgrade:
 - 1) First run (~ 5 fb⁻¹ @ $\sqrt{s} = M_{\phi}$)
 - e^{\pm} taggers for $\gamma\gamma$ physics:
 - $\label{eq:expectation} \begin{array}{l} \mbox{ Low Energy Tagger (} E_e = 130\text{-}230\mbox{ MeV}) \\ 2\mbox{ calorimeters, LYSO + SiPM; near the IP} \\ \sigma_E/E < 10\%\mbox{ for } E > 150\mbox{ MeV} \end{array}$
 - $\begin{array}{l} \mbox{ High Energy Tagger } (E_e > 400 \ MeV) \\ \mbox{ Scintillator hodoscope + PMTs;} \\ \mbox{ after the first dipole, ~ 11 m from IP} \\ \mbox{ pitch: 5 mm } \Rightarrow \ \ \sigma_E = 2.5 \ MeV; \ \ \sigma_t \approx \ 200 \ ps \end{array}$

From KLOE to KLOE-2

- 2) Major upgrade (Summer 2012) (goal : lunimosity > 20 fb⁻¹)
 - Inner tracker : 4 layers of cylindrical triple GEM to improve acceptance for low momentum tracks

- QCALT: W + scint. tiles + SiPM .
- CCALT : LYSO + APD to increase acceptance for γ's from the IP

Physics at a **\$\$**-factory

- Kaon physics: $|V_{us}|$ and CKM unitarity, CP and CPT violation, rare decays, χ PT tests, quantum mechanics tests (see C.Bloise's talk –
- **\operator \operator \operatorname{\operat**

(see C.Bloise's talk – Flavour Physics session)

- Hadron production in $\gamma\gamma$ collisions
- Hadronic cross-section via ISR $[e^+e^- \rightarrow \gamma \ (\pi^+\pi^-)]$: hadronic corrections to $(g-2)_{\mu}$ (see G.Venanzoni's talk tomorrow Top and EW Physics session)

• Published papers:

P.Gauzzi

- 22 July 2011

Box anomaly

• HLS model:

[Benayoun et al., EPJC31, 525 (2003)]

- $\eta' \rightarrow \pi^+ \pi^- \gamma$: $M_{\pi\pi}$ shape is affected by the contact term

- $\eta \rightarrow \pi^+ \pi^- \gamma$: $M_{\pi\pi}$ shape slightly sensitive to contact term; effect on the value of the BR

- If there is a higgs-like particle (h') in the dark sector , with m_{h'} < M_U ⇒ higgs'-strahlung e⁺e⁻→U^{*}→Uh', with U→ℓ⁺ℓ⁻
- Signature: $e^+e^- \rightarrow \ell^+\ell^- + \text{missing energy}$ (h' not detected)
- *e*⁺*e*[−] final state not selected by our
 Event Classification ⇒ use μ⁺μ[−]
- Background processes $\phi \to K^+K^-, K^{\pm} \to \mu^{\pm}\nu$ $\phi \to \pi^+\pi^-\pi^0$ $e^+e^- \to \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$ with γ lost

- If there is a higgs-like particle (h') in the dark sector , with m_{h'} < M_U
 ⇒ higgs'-strahlung e⁺e⁻→U^{*}→Uh', with U→ℓ⁺ℓ⁻
- Signature: $e^+e^- \rightarrow \ell^+\ell^- + \text{missing energy}$ (h' not detected)
- *e*⁺*e*[−] final state not selected by our
 Event Classification ⇒ use μ⁺μ[−]
- Background processes $\phi \rightarrow K^+K^-, K^{\pm} \rightarrow \mu^{\pm} \nu$ $\phi \rightarrow \pi^+\pi^-\pi^0$ $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$ with γ lost
- Most background comes from φ
 ⇒ strongly reduced by looking at off-peak data
- KLOE-2: Inner Tracker insertion should give major benefits to the analysis

 π^0, η, r input for the calculation of the Light-by-Light q_2 scattering contribution to g-2 of the muon (0.35 0.3 0.3 0.2 0.25 0.2 €Eİ1-0 CLEO 7 +> +> CLEO CLEO $\pi \mapsto 3\pi^4$ BABAR 0.2 CLEO n → n° n° n 0.15 0.1 0.05 0 10⁻¹ 1 $\stackrel{10}{Q^2}(GeV^2)$ ${}^{10}~Q^2~(GeV^2)$

ıly 2011

KLOE-2

- Measurement of $\Gamma(\mathbf{P} \rightarrow \gamma \gamma)$ lacksquare
- Transition form factors $\mathcal{F}_{P\gamma^*\gamma^*}(q_1^2,q_2^2)$: lacksquare
 - —

(50,35) = 0.35 = 0.35 = 0.35 = 0.25

0.2

0.15

0.1

0.05

P.Gauzzi

0[±] 10⁻¹

- PrimEx $\Rightarrow \Gamma(\pi^0 \rightarrow \gamma \gamma) = (7.82 \pm 0.14 \pm 0.17) \text{ eV}$ (2. [PRL106(2011)162303]
- KLOE-2 will extract the partial width from $e^+e^- \rightarrow e^+e^-\pi^0 \ (\pi^0 \rightarrow \gamma\gamma)$
- HET HET coincidence will select $q^2 \approx 0$ for both virtual γ

$$egin{aligned} \sigma_{tot} &\propto [\Gamma(\pi^0 o \gamma \gamma)]^2 \ \sigma_{tot}(s = M_\phi^2) \simeq 0.28 ~\mathrm{nb} \end{aligned}$$

- Taking into account acceptance and efficiencies
 - $\Rightarrow O(10^4)$ events expected in 5 fb⁻¹
 - $\Rightarrow ~ 1\% \text{ accuracy reachable on} \\ \Gamma(\pi^0 \rightarrow \gamma \gamma)$

P.Gauzzi

EPS HEP 2011 - 22

 $\gamma\gamma \rightarrow \eta, \eta \rightarrow \pi^+\pi^-\pi^0$

- KLOE: 240 pb⁻¹ off-peak ($\sqrt{s} = 1$ GeV)
- Sample: $2\gamma + 2$ tracks with opposite charge
- Main bckg: $e^+e^- \rightarrow \eta\gamma \rightarrow \pi^+\pi^-\pi^0\gamma$

(with the recoil photon lost in the beam pipe)

		ϵ
Signal	η	0.196
-	$\eta\gamma$	$9.1 imes 10^{-3}$
	$\omega \pi^0$	$6.5 imes 10^{-5}$
	$\pi^+\pi^-\pi^0$	$1.5 imes 10^{-5}$
	K^+K^-	$1.9 imes 10^{-5}$
	$K_S K_L$	$2.6 imes 10^{-5}$
	$e^+e^-\gamma$	$O(10^{-7})$

 \Rightarrow 1576 events after the selection

 Fit to η longitudinal momentum (p_L) and missing mass (M_{miss})
 → 650 signal events from fit

 \Rightarrow 650 signal events from fit

EPS HEP 2011 - 22 July 2011

 $\gamma\gamma \rightarrow \eta, \eta \rightarrow \pi^0 \pi^0 \pi^0$

350

300

250

200

Eq1 vs χ^2_n

MC e⁺e⁻→ny

E₇₁(MeV)

350

300

250

- Events with 6 prompt photons and no tracks
- Background: $e^+e^- \rightarrow \eta\gamma \rightarrow \pi^0\pi^0\pi^0\gamma$ (with the recoil photon lost in the beam pipe)
- Cut on the most energetic photon (< 260 MeV) and on the χ^2 of the kinematic fit

- $e^+e^- \rightarrow e^+e^- \pi^0\pi^0$
- 240 pb⁻¹ off-peak ($\sqrt{s} = 1 \text{ GeV}$)
- Selected sample: 4 prompt photons
- Best photon pairing to match two π⁰'s

$$\chi^{2}_{pair} = \left(\frac{M_{ij} - m_{\pi 0}}{\sigma(E_{i}, E_{j})}\right)^{2} + \left(\frac{M_{lk} - m_{\pi 0}}{\sigma(E_{l}, E_{k})}\right)^{2}$$
$$\frac{\sigma(E_{i}, E_{j})}{M_{ij}} = \frac{1}{2} \left(\frac{\sigma_{E_{i}}}{E_{i}} \oplus \frac{\sigma_{E_{j}}}{E_{j}}\right)$$
$$M^{2}_{ij} = 2E_{i}E_{j}(1 - \cos\theta_{ij})$$

