THE UNIVERSITY OF
 WARWICK

Charmless hadronic B decays

 with BaBarEugenia Maria Teresa Puccio on behalf of the BaBar collaboration

Talk outline

- The experiment
- Analysis techniques
- The results:
- $\mathrm{B}^{+} \rightarrow \mathrm{p}^{0} \mathrm{~K}^{*+;} ; \mathrm{B}^{+} \rightarrow \mathrm{f}_{0} \mathrm{~K}^{*+}$
- $\mathrm{B}^{+} \rightarrow \varphi \varphi \mathrm{K}^{+} ; \mathrm{B}^{0} \rightarrow \varphi \varphi \mathrm{~K}_{\mathrm{s}}$
- $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{m}^{+} \pi^{0}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0} \pi^{0}$
- Conclusion

PEP-II and BaBar

- PEP-II B-Factory collided $\mathrm{e}^{+} \mathrm{e}^{-}$asymmetric beams at $\mathrm{Y}(4 \mathrm{~S})$ energy threshold

Positrons

- BaBar in operation from 1999-2008
- All analyses presented use full BaBar Y(4S) dataset
- $432 \mathrm{fb}^{-1}$ at the $\mathrm{Y}(4 \mathrm{~S})$
- 467M B \bar{B} pairs

Why charmless B decays?

- Charmless B decays probe dynamics of weak and strong interactions
- Contributions from both penguin and trees can lead to direct CP violation
- Time dependent measurements and interferences between intermediate states allow to measure all CKM angles
- Allow searching for New Physics from new particles in loops - look for enhanced BF or CP asymmetry (A_{CP})

Analysis techniques

- Use precise kinematical information from beam: $m_{E S}$ and $\Delta \mathrm{E}$
- Distinguish light $q \bar{q}$ from $b \bar{b}$ using event topology:
- B mesons produced almost at rest in the $\mathrm{Y}(4 \mathrm{~S})$ frame - isotropic event
- continuum produced with large kinetic energy - jet-like event

$$
m_{E S}=\sqrt{E_{\text {beam }}^{* 2}-p_{B}^{* 2}} \quad \Delta E=E_{B}^{*}-E_{\text {beam }}^{*}
$$

$\mathrm{B}^{+} \rightarrow \rho^{0} \mathrm{~K}^{*+}, \mathrm{f}_{0} \mathrm{~K}^{*+}$: Motivation

- Model independent predictions give large longitudinal polarisation fractions (f_{L}) in $B \rightarrow V V$ decays
- Experimental results give $f_{L} \approx 0.5$ in penguin dominated $b \rightarrow s$ decays
- $\mathrm{B}^{+} \rightarrow \rho^{0} \mathrm{~K}^{*+}$ not yet observed
- Predictions from QCD give $B F \approx(5 \pm 1) \times 10^{-6}$

- Nucl. Phys. B774, 64 (2007)
- Phys. Rev. D78, 094001 (2008) [Erratum-ibid.

D79, 039903 (2009)]

$\mathrm{B}^{+} \rightarrow \rho^{0} \mathrm{~K}^{*+}, \mathrm{f}_{0} \mathrm{~K}^{*+}$: Results

Phys.Rev.D83:051101,2011

- Reconstruct ρ^{0} / f_{0} in decay to $\pi^{+} \pi^{-}$
- Reconstruct K^{*+} to $\mathrm{K}_{S} \Pi^{+}$and $\mathrm{K}^{+} \pi^{0}$
- ML fit with 7 variables
- Results consistent with previous BaBar upper limit
- First observation of $\mathrm{B}^{+} \rightarrow \rho^{0} \mathrm{~K}^{*}$ with 5.3σ significance
- f_{L} compatible with current experimental results in $\mathrm{b} \rightarrow \mathrm{s}$ decays

Decay	$\mathrm{N}_{\text {signal }}$	BF ($\times 10^{-6}$)	A_{CP} (\%)	f_{L}
$\mathrm{B}^{+} \rightarrow \mathrm{\rho}^{0} \mathrm{~K}^{*+}$	$\begin{aligned} & 85 \pm 24\left(\mathrm{~K}_{S} \Pi^{+}\right) \\ & 67 \pm 31\left(\mathrm{~K}^{+} \pi^{0}\right) \end{aligned}$	$4.6 \pm 1.0 \pm 0.4$	$31 \pm 13 \pm 3$	$0.78 \pm 0.12 \pm 0.003$
$\mathrm{B}^{+} \rightarrow \mathrm{f}_{0} \mathrm{~K}^{*+}$	$\begin{aligned} & 69 \pm 14\left(\mathrm{~K}_{S} \Pi^{+}\right) \\ & 91 \pm 20\left(\mathrm{~K}^{+} \pi^{0}\right) \end{aligned}$	$4.2 \pm 0.6 \pm 0.3$	$-15 \pm 12 \pm 3$	-

$\mathrm{B} \rightarrow \phi \phi \mathrm{K}$: Motivations

$$
\mathrm{B} \rightarrow \mathrm{n}_{\mathrm{c}}(\rightarrow \varphi \varphi) \mathrm{K} \text { (Tree) }
$$

$$
\mathrm{B} \rightarrow \varphi \varphi \mathrm{~K} \text { (Penguin) }
$$

- SM tree and penguin have similar weak phase
- No direct CP violation expected
- Significant direct CP asymmetry could be produced by a non-zero CP violating phase
- Sign of New Physics ${ }^{1}$
- Only JP $=0$ - component of $(\varphi \varphi) \mathrm{K}$ interferes with η_{c}
- Angular analysis is helpful
${ }^{1}$ Phys. Lett. B583, 285 (2004)

$\mathrm{B} \rightarrow \phi \phi \mathrm{K}$: Results

- ML fit to 5 variables: $m_{\mathrm{ES}}, \Delta \mathrm{E}$, Fisher, $\mathrm{m}_{\varphi 1}$ and $\mathrm{m}_{\varphi 2}$
- At $\mathrm{m}_{\varphi \varphi}<2.85 \mathrm{GeV} / \mathrm{c}^{2}$:
- $\mathrm{BF}\left(\mathrm{B}^{+} \rightarrow \phi \phi \mathrm{K}^{+}\right)=(5.6 \pm 0.5 \pm 0.3) \times 10^{-6}$
- $A_{C P}=-0.10 \pm 0.08 \pm 0.02$
- First observation of
$\mathrm{BF}\left(\mathrm{B}^{0} \rightarrow \phi \phi \mathrm{~K}_{\mathrm{S}}\right)=(4.5 \pm 0.8 \pm 0.3) \times 10^{-6}$
- In η_{c} region $\left(2.94<\mathrm{m}_{\varphi \varphi}<3.02 \mathrm{GeV} / \mathrm{c}^{2}\right)$
- $A_{C P}=-0.09 \pm 0.10 \pm 0.02$ is consistent with SM expectations

Measuring γ in $\mathrm{B} \rightarrow \mathrm{K} \pi \pi$

- Form isospin triangles from $\mathrm{K}^{*} \Pi$ modes: ${ }^{1}$
- From $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \Pi^{-} \Pi^{0}{ }^{2}$
- From $\mathrm{B}^{0} \rightarrow \mathrm{~K}_{s} \Pi^{+} \pi^{-3}$
- Resultant amplitude:
$3 A_{\underline{3}}=A\left(B^{0} \rightarrow K^{*+} \pi^{-}\right)+\sqrt{2} A\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)$
- Phase $\Phi_{3 / 2}$ determined from combinations of phases and amplitudes
- $\Phi_{3 / 2}$ is related to y up to
 corrections for EW penguins
${ }^{1}$ Ciuchini et al., Phys. Rev. D74, 051301 (2006), Gronau et al., Phys. Rev. D81, 094011 (2010)
${ }^{2}$ Phys.Rev.D83:112010,2011 (results shown here)
${ }^{3}$ B.Aubert et al., Phys. Rev. D80, 112001

The $K^{+} \pi^{-} \pi^{0}$ Dalitz plot

- Overlap region of resonances small
- Effect on event density is subtle
- Crucial to understand backgrounds and efficiencies in

Phys.Rev.D83:112010,2011 interference regions.

- ML fit with $\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}^{\prime}, \mathrm{NN}_{\text {out }}$ and DP
- Maximise separation between signal and background
- Signal category includes signal from misreconstructed events

Results from $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$

Phys.Rev.D83:112010,2011

- $\mathrm{BF}\left(B^{0} \rightarrow K^{+} \Pi^{-} \pi^{0}\right)=(38.5 \pm 1.0 \pm 3.9) \times 10^{-6}$
- 3.1 σ evidence of direct CP violation in $\mathrm{B}^{0} \rightarrow K^{*+} \pi^{-}$
- Poor sensitivity to $\Phi_{3 / 2}$ since $\overline{\mathrm{A}}_{3 / 2}\left(\mathrm{~K}^{*} \pi\right)$ close to zero.
- $\Phi_{3 / 2}(\mathrm{pK})=\left(-10^{+10}-20^{+7}-22\right)^{\circ}$

Isobar	$\mathcal{B}\left(\times 10^{-6}\right)$	$\bar{\Phi}\left[^{\circ}\right]$	$\Phi\left[^{\circ}\right]$	$A_{C P}$
$\rho(770)^{-} K^{+}$	$6.6 \pm 0.5 \pm 0.8$	0 (fixed)	0 (fixed)	$0.20 \pm 0.09 \pm 0.08$
$\rho(1450)^{-} K^{+}$	$2.4 \pm 1.0 \pm 0.6$	$75 \pm 19 \pm 9$	$126 \pm 25 \pm 26$	$-0.10 \pm 0.32 \pm 0.09$
$\rho(1700)^{-} K^{+}$	$0.6 \pm 0.6 \pm 0.4$	$18 \pm 36 \pm 16$	$50 \pm 38 \pm 20$	$-0.36 \pm 0.57 \pm 0.23$
$K^{*}(892)^{+} \pi^{-}$	$8.0 \pm 1.1 \pm 0.8$	$33 \pm 22 \pm 20$	$39 \pm 25 \pm 20$	$-0.29 \pm 0.11 \pm 0.02$
$K^{*}(892)^{0} \pi^{0}$	$3.3 \pm 0.5 \pm 0.4$	$29 \pm 18 \pm 6$	$17 \pm 20 \pm 8$	$-0.15 \pm 0.12 \pm 0.04$
$(K \pi)_{0}^{*+} \pi^{-}$	$34.2 \pm 2.4 \pm 4.1$	$-167 \pm 16 \pm 37$	$-130 \pm 22 \pm 22$	$0.07 \pm 0.14 \pm 0.01$
$(K \pi)_{0}^{* 0} \pi^{0}$	$8.6 \pm 1.1 \pm 1.3$	$13 \pm 17 \pm 12$	$10 \pm 17 \pm 16$	$-0.15 \pm 0.10 \pm 0.04$
NR	$2.8 \pm 0.5 \pm 0.4$	$48 \pm 14 \pm 6$	$90 \pm 21 \pm 15$	$0.10 \pm 0.16 \pm 0.08$

Search for $\mathrm{B}^{+} \rightarrow K^{+} \pi^{0} \pi^{0}$: Motivations

- Possible hints of New Physics in measurements of rates and asymmetries in $\mathrm{B} \rightarrow \mathrm{K} \pi^{1,2}$.
- More precise measurements needed for all observables in $B \rightarrow K$ m or look at $\mathrm{B} \rightarrow \mathrm{K}^{*}$ т decays ${ }^{3}$.

Mode	$\mathrm{BF} \times 10^{-6}$	$\mathbf{A}_{\mathbf{C P}}$
$\mathrm{K}^{*+} \Pi^{-}$	10.3 ± 1.1	-0.23 ± 0.08
$\mathrm{~K}^{*+} \Pi^{0}$	6.9 ± 2.3	$0.04 \pm 0.29 \pm 0.05^{4}$
$\mathrm{~K}^{*} \Pi^{+}$	$9.9+0.8-0.9$	$-0.02+0.067-0.061$
$\mathrm{~K}^{* 0} \Pi^{0}$	2.4 ± 0.7	$-0.15 \pm 0.12 \pm 0.02$

$$
\begin{aligned}
& K^{0} \pi^{+} \pi^{-} K^{+} \pi^{-} \pi^{0} K^{0} \pi^{0} \pi^{0} \\
& K^{*+} \pi^{-}, K^{* 0} \pi^{0} \\
& K^{+} \pi^{0} \pi^{0+} \pi^{0} K^{0} \pi^{+0} \pi^{+} \\
& K^{+} \\
& K^{+} \pi^{+} \pi^{-}
\end{aligned}
$$

- Improved measurement of $K^{*}+\pi^{0}$ needed.
- Only 3-body Kாтா Dalitz plot not measured.
Study light mesons in $\pi^{0} \pi^{0}$ spectrum eg. $\mathrm{f}_{0}(980)$.

[^0]
Search for $\mathrm{B}^{+} \rightarrow K^{+} \pi^{0} \pi^{0}$: Inclusive results

Preliminary results - To be submitted to Phys. Rev. D

$\mathrm{N}_{\text {sig }}=1220 \pm 85$

- ML fit to two variables $m_{E S}$ and $N_{\text {out }}$:
- DP analysis not possible at present
. Large fractions of misreconstructed signal events - difficult to model
- $\Delta \mathrm{E}$ dependent on DP position, not included in fit to avoid biases
- Signal component includes also misreconstructed signal events
- $\mathrm{BF}\left(\mathrm{B}^{+} \rightarrow K^{+} \pi^{0} \pi^{0}\right)=(16.2 \pm 1.2 \pm 1.5) \times 10^{-6}$ with more than 10σ significance
- $A_{C P}=-0.06 \pm 0.06 \pm 0.04$
__ overall fit
-•-. signal contribution
- - - all backgrounds
------ continuum contribution

Search for $\mathrm{B}^{+} \rightarrow K^{+} \pi^{0} \pi^{0}$: resonances

Preliminary results - To be submitted to Phys. Rev. D

- Select resonance signal region in corresponding signal invariant mass reproduced from sWeights
- Yields from nonresonant and other resonances estimated as a normalised average of two sideband regions

Decay mode	Results	Previous world average
$\mathrm{B}^{+} \rightarrow \mathrm{f}_{0}\left(\rightarrow \pi^{0} \pi^{0}\right) \mathrm{K}^{+}$	$\mathrm{BF}=(2.79 \pm 0.57 \pm 0.51) \times 10^{-6}$ $\mathrm{~A}_{\mathrm{CP}}=(18 \pm 18 \pm 4) \%$	
$\mathrm{~B}^{+} \rightarrow \mathrm{K}^{++}(892) \pi^{0}$	$\mathrm{BF}=(8.2 \pm 1.5 \pm 1.1) \times 10^{-6}$ $\mathrm{~A}_{\mathrm{CP}}=(-6 \pm 24 \pm 4) \%$	$\mathrm{BF}=(6.9 \pm 2.3) \times 10^{-6}$ $\mathrm{~A}_{\mathrm{CP}}=(4 \pm 29) \%$
$\mathrm{~B}^{+} \rightarrow \mathrm{X}_{\mathrm{Co}} \mathrm{K}^{+}$	$\mathrm{BF}=(182 \pm 78 \pm 32) \times 10^{-6}$ $\mathrm{~A}_{\mathrm{CP}}=(-96 \pm 37 \pm 4) \%$	$\mathrm{BF}=\left(133^{+19}-16\right) \times 10^{-6}$ $\mathrm{~A}_{\mathrm{CP}}=(-11 \pm 12) \%$
2.5σ significance \quad measured from $\mathrm{X}_{\mathrm{C}} \rightarrow \pi^{+} \pi^{-}$		

Conclusion

- BaBar continues to produce many new physics results in charmless B decays
- Most of these results agree with Standard Model prediction but some puzzles still remain
a polarisation puzzle
- "K π " puzzle
- More statistics are needed to see if these discrepancies are an indication of New Physics
- Need data from current LHCb
and future experiments THG

BACKUP SLIDES

$\mathrm{B} \rightarrow \phi \phi \mathrm{K}$: Angular analysis

Definition of angles:

- angle between K^{+}momentum from φ_{i} decay wrt to the boost in the $\varphi \varphi$ rest frame
- dihedral angle between φ_{1} and φ_{2} in $\varphi \varphi$ rest frame
- angle between a φ meson wrt to the boost from B^{+}rest frame

In η_{c} region consistent with $\mathrm{Jp}=\mathrm{O}^{-}$

$\mathrm{K}^{*} \pi$ Amplitudes and penguins

- Tree component expected to be small compared to dominant QCD penguin in $\mathrm{K}^{*} \pi$ amplitudes
- QCD penguin contributions cancel in the sum of $A_{K^{*} \pi}$
- $A_{3 / 2}$ is QCD penguins free (not EWP penguin free)

$\mathrm{K}^{+} \pi^{-} \pi^{0} \mathrm{DP}: \mathrm{K}^{*} \pi$ vs $\rho \mathrm{K}$ amplitudes

Phys.Rev.D83:112010,2011

- $\overline{\mathrm{A}}_{3 / 2}\left(\mathrm{~K}^{*} \pi\right)$ found to be consistent with 0 :
- Uncertainties on $\Phi_{3 / 2}$ too large

$$
\begin{gathered}
\bar{A}_{\frac{3}{2}}=\frac{1}{\sqrt{2}} \bar{A}\left(B^{0} \rightarrow K^{*-} \pi^{+}\right)+\bar{A}\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right) \\
\text { All from } \mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \Pi^{-} \Pi^{0} \mathrm{DP} \\
\overline{\mathbf{A}}_{\mathbf{K}^{\circ} \pi^{0}} \\
\frac{1}{\sqrt{2}} \overline{\mathbf{A}}_{\mathbf{K}^{*} \pi^{+}}
\end{gathered}
$$

- Situation in ρK decays found to be more favorable.

Results from time dependent $B^{0} \rightarrow K_{\mathrm{S}} \pi^{+} \pi^{-}$

- BaBar result from 383 million $B \bar{B}$ events gives:
- $\Delta \phi=(58.3 \pm 32.7 \pm 4.6 \pm 8.1)^{\circ}$
- $\Delta \phi=(176.6 \pm 28.8 \pm 4.6 \pm 8.1)^{\circ}$ (errors are stat, syst, model)
- Belle results from 657 million $\mathrm{B} \overline{\mathrm{B}}$:
- $\Delta \phi=\left(-0.7 \pm{ }^{24}{ }_{23} \pm 11 \pm 18\right)^{\circ}$
- $\Delta \phi=\left(+14.6 \pm{ }^{19}{ }_{20} \pm 11 \pm 18\right)^{\circ}$ (errors are stat, syst, model)
- Difference between solutions is interference between $\mathrm{K}_{0}{ }^{* \pm}(1430)$ and NR
- This phase difference includes the $B^{0} \bar{B}^{0}$ mixing phase (-2β)

$\mathrm{K}^{*+} \pi{ }^{-}$and $\mathrm{K}^{*} \pi^{+}$phase difference

Issue 1 - Phase conventions

- Each quasi-two body subsystem of Kmт in the vector meson rest frame contains:
- Two pseudoscalar decay products with momentum \mathbf{q} and $\mathbf{- q}$
- The bachelor pseudoscalar with momentum \mathbf{p}
- Choice of which resonance daughter is defined to have positive momentum defines the phase convention
- Alternative choice induces a 180° flip of the phase
- Whichever choice is made it must be correctly accounted for when combining amplitudes to obtain the constraint on the UT apex
- See Gronau et al., Phys.Rev.D81, 094026(2010)

Issue 2 - EWP contributions

Gronau et al., Phys.Rev.D75, 014002

$$
\begin{aligned}
& 75,014002 \\
& A_{\frac{3}{2}}^{2} \propto(\bar{\rho}+i \bar{\eta})\left(1+\left(r_{\frac{3}{2}}^{2}\right)+C\left(1-r_{\frac{3}{2}}^{2}\right)\right. \\
& \text { operators }
\end{aligned}
$$

SU(3) decomposition of operators gives good approximation:

Wilson coeff, $\lambda \approx-0.27$
Ratio of hadronic matrix elements

$$
r_{\frac{3}{2}}=\frac{\left[A_{\rho^{+} \pi^{0}}-A_{\rho^{0} \pi^{+}}\right]-\sqrt{2}\left[A_{K^{*}+\bar{K}^{0}}-A_{K^{+}}{ }_{\mathcal{K}^{*}}\right]}{A_{\rho^{+} \pi^{0}}+A_{\rho^{0} \pi^{+}}}
$$

Estimating $r_{3 / 2}$

Decay Mode	$\mathbf{B F}(\mathbf{x 1 0 - 6})$	$\mathbf{A}_{\mathbf{C P}}$		
$B^{+} \rightarrow \rho^{0} \pi^{+}$	$8.3^{+1.2}-1.3$	$0.18^{+0.09}-0.17$		
$B^{+} \rightarrow \rho^{+} \pi^{0}$	$10.9^{+1.4}-1.5$	0.02 ± 0.11		
$B^{+} \rightarrow K^{+} \bar{K}^{00}$	0.68 ± 0.19	-		
$B^{+} \rightarrow K_{S} K_{S} \pi^{+}$	<0.51	-	\quad	BFs are well
:---				
measured				

Experimental numbers from HFAG Winter 2010, www.slac.stanford.edu/xorg/hfag/
Strategy - Separate into well-measured components and systematic uncertainty
$K^{*} \mathrm{~K}$ Systematic

$$
r_{\frac{3}{2}}=\frac{A_{\rho^{+} \pi^{0}}-A_{\rho^{0} \pi^{+}}}{A_{\rho^{+} \pi^{0}}+A_{\rho^{0} \pi^{+}}} \pm \sqrt{2} \frac{A_{K^{*+} \bar{K}^{* 0}}-A_{K^{+} \bar{K}^{* 0}}}{A_{\rho^{+} \pi^{0}}+A_{\rho^{0} \pi^{+}}} \pm 30 \% S U(3)
$$

Measurement of $r_{3 / 2}$

3\% SU(3) breaking

$r_{\frac{3}{2}} \equiv \frac{A_{\rho^{+} \pi^{0}}-A_{\rho^{0} \pi^{+}}}{} A_{\rho^{+} \pi^{0}}+A_{\rho^{0} \pi^{+}} \quad(\quad)$

30\% SU(3) breaking

Contours darkest to lightest:
1, 2, 3, 4, 5σ
A. Wagner, PhD Thesis, SLAC-R-942

- $\mathrm{K}^{*} \mathrm{~K}$ contribution added as a systematic.

Determining γ from $\mathrm{B} \rightarrow \rho \mathrm{K}$

- Another method involves using $\mathrm{B} \rightarrow \mathrm{pK}$ with $\mathrm{K}^{+} \pi \pi^{0}$ and $\mathrm{K}_{\mathrm{S}} \mathrm{T}^{+} \mathrm{m}^{-}$
- Subtle difference with $\mathrm{K}^{*} \pi$: relative phase not measured directly:
- $\rho^{+} K^{-}$measured from $K^{+} \pi^{-} \pi^{0}$
- $\rho^{0} K_{S}$ measured from $K_{S} \pi^{+} \pi^{-}$
- $\mathrm{A}_{3 / 2}$ determined from difference between the phases relative to $\mathrm{K}^{*+} \Pi^{-}$
- EW penguin contributions follow again from ρ т like in $K^{*}(892) \pi$ case

Interference fractions

$$
F F_{i j}=\frac{\int_{\mathrm{DP}} 2 \operatorname{Re}\left[c_{i} c_{j}^{*} F_{i}\left(m_{+}^{2}, m_{-}^{2}\right) F_{j}^{*}\left(m_{+}^{2}, m_{-}^{2}\right)\right] d\left(m_{+}^{2}\right) d\left(m_{-}^{2}\right)}{\int_{\mathrm{DP}}\left|\sum_{j} c_{j} F_{j}\left(m_{+}^{2}, m_{-}^{2}\right)\right|^{2} d\left(m_{+}^{2}\right) d\left(m_{-}^{2}\right)}
$$

- Gives the extent of the interference effect between two resonances as measured in the fit.
- It's a convention independent representation of the event population of the DP
- $+\mathrm{FF}_{\mathrm{ij}}=$ constructive interference
- $-\mathrm{FF}_{\mathrm{ij}}=$ destructive interference

[^0]: ${ }^{1}$ B.Aubert et al. (BABAR), Phys. Rev. D76, 091102 (2007), 0707.2798
 ${ }^{2}$ Nature 452, 332 (2008)
 ${ }^{3}$ Chiang, C.W. and London, D., Mod. Phys.Lett. A24(2009), pp.1983, 0904.2235
 ${ }^{4}$ B.Aubert et al. (BABAR), Phys. Rev. D71, 111101 (2005), hep-ex/0504009

