

THE UNIVERSITY OF WARVICK

Charmless hadronic B decays with BaBar

Eugenia Maria Teresa Puccio on behalf of the BaBar collaboration

Talk outline

- The experiment
- Analysis techniques
- The results:
 - $\square B^+ \rightarrow \rho^0 K^{*+}; B^+ \rightarrow f_0 K^{*+}$
 - $\square B^+ \rightarrow \phi \phi K^+; B^0 \rightarrow \phi \phi K_S$
 - $\square B^0 \longrightarrow K^+ \pi^- \pi^0$
 - $\Box B^+ \rightarrow K^+ \pi^0 \pi^0$
- Conclusion

PEP-II and BaBar

 PEP-II B-Factory collided e⁺e⁻ asymmetric beams at Y(4S) energy threshold

- BaBar in operation
 from 1999 2008
- All analyses presented use full BaBar Y(4S) dataset
 - □ 432fb⁻¹ at the Y(4S)
 - □ 467M BB pairs

Why charmless B decays?

- Charmless B decays probe dynamics of weak and strong interactions
 - Contributions from both penguin and trees can lead to direct CP violation
 - Time dependent measurements and interferences between intermediate states allow to measure all CKM angles
- Allow searching for New Physics from new particles in loops – look for enhanced BF or CP asymmetry (A_{CP})

Analysis techniques

- Use precise kinematical information from beam: m_{ES} and ΔE
- Distinguish light qq from bb using event topology:
 - B mesons produced almost at rest in the Y(4S) frame – isotropic event
 - continuum produced with large kinetic energy – jet-like event
- Combine event topology variables in a Neural Network or Fisher discriminant and use output:
 - apply selection to reject continuum
 - as variable in ML fit

$B^+ \rightarrow \rho^{0} K^{*+}, f_0 K^{*+}: Motivation$

- Model independent predictions give large longitudinal polarisation fractions (f_L) in B→VV decays
 - Experimental results give f_L≈ 0.5 in penguin dominated b→s decays
- $B^+ \rightarrow \rho^0 K^{*+}$ not yet observed
 - Predictions from QCD give BF ≈ $(5 \pm 1) \times 10^{-6}$
 - Nucl. Phys. B774, 64 (2007)
 - Phys. Rev. D78, 094001 (2008) [Erratum-ibid.
 D79, 039903 (2009)]

$B^+ \rightarrow \rho^0 K^{*+}, f_0 K^{*+}: Results$

Phys.Rev.D83:051101,2011

- Reconstruct ρ^0/f_0 in decay to $\pi^+\pi^-$
- Reconstruct K^{*+} to $K_{s}\pi^{+}$ and K⁺ π^{0}
- ML fit with 7 variables
- Results consistent with previous BaBar upper limit
- First observation of $B^+ \rightarrow \rho^0 K^{*+}$ with 5.3 σ significance
- f₁ compatible with current experimental results in $b \rightarrow s$ decays

BF (x10⁻⁶)

 $4.6 \pm 1.0 \pm 0.4$

N_{signal}

 $85 \pm 24 (K_s \pi^+)$

 $67 \pm 31 (K^{+}\pi^{0})$

 $69 \pm 14 (K_{s}\pi^{+})$

91 ± 20 (K⁺ π^0)

Decay

 $B^+ \rightarrow \rho^0 K^{*+}$

 $B^+ \rightarrow f_0 K^{*+}$

A_{CP} (%)

$B \rightarrow \phi \phi K$: Motivations

- SM tree and penguin have similar weak phase
 - No direct CP violation expected
- Significant direct CP asymmetry could be produced by a non-zero CP violating phase
 - Sign of New Physics¹
- Only $J^{P} = 0^{-}$ component of $(\varphi \varphi)K$ interferes with η_{c}
 - Angular analysis is helpful

¹ Phys. Lett. B583, 285 (2004)

$B \rightarrow \phi \phi K$: Results

- ML fit to 5 variables: m_{ES} , ΔE , Fisher, $m_{\phi 1}$ and $m_{\phi 2}$
- At $m_{\phi\phi}$ < 2.85 GeV/c²:
 - □ $BF(B^+ \rightarrow \phi \phi K^+) = (5.6 \pm 0.5 \pm 0.3) \times 10^{-6}$
 - $A_{CP} = -0.10 \pm 0.08 \pm 0.02$
 - First observation of BF(B⁰ $\rightarrow \phi \phi K_S$)=(4.5±0.8±0.3)×10⁻⁶
- In η_c region (2.94<m_{$\phi\phi$}<3.02 GeV/c²)
 - $A_{CP} = -0.09 \pm 0.10 \pm 0.02$ is consistent with SM expectations

Measuring γ in $B \rightarrow K\pi\pi$

- Form isospin triangles from K^{*}π modes: ¹
 - $\Box \quad From \ B^0 \rightarrow K^+ \pi^- \pi^{0-2}$
 - From $B^0 \rightarrow K_S \pi^+ \pi^{-3}$
- Resultant amplitude:

$$3A_{\frac{3}{2}} = A\left(B^0 \to K^{*+}\pi^-\right) + \sqrt{2}A\left(B^0 \to K^{*0}\pi^0\right)$$

- Phase Φ_{3/2} determined from combinations of phases and amplitudes
- Φ_{3/2} is related to γ up to corrections for EW penguins

¹ Ciuchini et al., Phys. Rev. D74, 051301 (2006), Gronau et al., Phys. Rev. D81, 094011 (2010) ² Phys.Rev.D83:112010,2011 (results shown here)

³ B.Aubert *et al.*, Phys. Rev. D80, 112001

The $K^+\pi^-\pi^0$ Dalitz plot

- Overlap region of resonances small
 - Effect on event density is subtle
 - Crucial to understand backgrounds and efficiencies in interference regions.
- ML fit with m_{ES}, ΔE', NN_{out} and DP
 - Maximise separation between signal and background
 - Signal category includes signal from misreconstructed events

m(K⁺π⁰) (GeV/c²)

 $K^{*+}(1430)\pi^{-}$

 $K^{*0}(1430) \pi^0$

Non – Resonant

Search for $B^+ \rightarrow K^+ \pi^0 \pi^0$: Motivations

- Possible hints of New Physics in measurements of rates and asymmetries in B→Kπ^{1,2}.
- More precise measurements needed for all observables in B→Kπ or look at B→K*π decays³.

Mode	BF x 10 ⁻⁶	A _{CP}
K*+π-	10.3 ± 1.1	-0.23±0.08
K*+π ⁰	6.9 ± 2.3	$0.04 \pm 0.29 \pm 0.05^4$
K*0π+	9.9 + 0.8 - 0.9	-0.02+0.067-0.061
K ^{*0} π ⁰	2.4 ± 0.7	-0.15±0.12±0.02

- Improved measurement of $K^{*+} \pi^0$ needed.
- Only 3-body $K\pi\pi$ Dalitz plot not measured.
- Study light mesons in $\pi^0\pi^0$ spectrum eg. f₀(980).

¹B.Aubert *et al.* (BABAR), *Phys. Rev.* **D76**, 091102 (2007), 0707.2798 ²Nature **452**, 332 (2008)

³ Chiang, C.W. and London, D., *Mod. Phys.Lett.* **A24**(2009), pp.1983, 0904.2235

⁴ B.Aubert *et al.* (BABAR), *Phys. Rev.* **D71**, 111101 (2005), hep-ex/0504009

Search for $B^+ \rightarrow K^+ \pi^0 \pi^0$: Inclusive results

Preliminary results – To be submitted to Phys. Rev. D

----· continuum contribution

ML fit to two variables m_{ES} and NN_{out} :

- DP analysis not possible at present
 - Large fractions of misreconstructed signal events – difficult to model
- ΔE dependent on DP position, not included in fit to avoid biases
- Signal component includes also misreconstructed signal events
- BF(B⁺ \rightarrow *K*⁺ $\pi^{0}\pi^{0}$) = (16.2±1.2±1.5)x10⁻⁶ with more than 10σ significance
- $A_{CP} = -0.06 \pm 0.06 \pm 0.04$

Search for $B^+ \rightarrow K^+ \pi^0 \pi^0$: resonances

Preliminary results – To be submitted to Phys. Rev. D

- Select resonance signal region in corresponding signal invariant mass reproduced from sWeights
- Yields from nonresonant and other resonances estimated as a normalised average of two sideband regions

preliminary	sideband regions				
	Decay mode	Results	Previous world average		
$1 1.1 1.2 \\ m_{\pi^0 \pi^0} (\text{GeV/c}^2)$	$B^+ \rightarrow f_0 (\rightarrow \pi^0 \pi^0) K^+$	BF= $(2.79 \pm 0.57 \pm 0.51) \times 10^{-6}$ A _{CP} = $(18 \pm 18 \pm 4)\%$			
BABAR preliminary	B ⁺ →K ^{*+} (892)π ⁰	BF = (8.2±1.5±1.1) x10 ⁻⁶ A _{CP} = (-6±24±4)%	BF = (6.9±2.3) x10 ⁻⁶ A _{CP} = (4±29)%		
	$B^+ \rightarrow \chi_{c0} K^+$	7 BF = (182±78±32) x10 ⁻⁶ A _{CP} = (-96±37±4)%	BF = $(133^{+19}_{-16}) \times 10^{-6}$ A _{CP} = $(-11\pm 12)\%$		
3.45 $3.5m_{\pi^0\pi^0} (GeV/c2)$	2.5σ significance measured free		rom χ _c →π⁺π⁻		

3.35

3.4

-100

0.7

Signature Signat

0.8

Events (0008)

0.9

_sPlots

0.8

BABAR preliminary

 $\begin{array}{c} 0.9 \\ m_{K^{+}\pi^{0}_{min}} \\ (\text{GeV/c}^{2}) \end{array}$

Conclusion

- BaBar continues to produce many new physics results in charmless B decays
- Most of these results agree with Standard Model prediction but some puzzles still remain
 - polarisation puzzle
 - "Kπ" puzzle
- More statistics are needed to see if these discrepancies are an indication of New Physics
- Need data from current and future experiments

BACKUP SLIDES

Definition of angles:

- angle between $K^{\scriptscriptstyle +}$ momentum from ϕ_i decay wrt to the boost in the $\phi\phi$ rest frame

• dihedral angle between ϕ_1 and ϕ_2 in $\phi\phi$ rest frame

- angle between a ϕ meson wrt to the boost from B+ rest frame

21 July 2011

$K^*\pi$ Amplitudes and penguins

 π

 π

 $A_{\frac{3}{2}} = \frac{1}{\sqrt{2}} A \left(B^0 \rightarrow K^{*+} \pi^- \right) + A \left(B^0 \rightarrow K^{*0} \pi^0 \right)$

- Tree component expected to be small compared to dominant QCD penguin in K^{*}π amplitudes
- QCD penguin contributions cancel in the sum of $A_{\kappa^*\pi}$
 - $A_{3/2}$ is QCD penguins free (not EWP penguin free)

$K^+\pi^-\pi^0$ DP: $K^*\pi$ vs ρK amplitudes

Phys.Rev.D83:112010,2011

- Ā_{3/2}(K^{*}π) found to be consistent with 0:
 - Uncertainties on $\Phi_{3/2}$ too large

$$\overline{A}_{\frac{3}{2}}^{3} = \frac{1}{\sqrt{2}} \overline{A} (B^{0} \rightarrow \rho^{+} K^{-}) + \overline{A} (B^{0} \rightarrow \rho^{0} K^{0})$$
From B⁰ $\rightarrow K^{+} \pi^{-} \pi^{0} DP$ From B⁰ $\rightarrow K_{S} \pi^{+} \pi^{-} DP$

$$A_{\frac{3}{2}}(\rho K) \underbrace{\frac{1}{\sqrt{2}} A_{\rho^{-} K^{+}}}_{A_{\rho^{0} K^{0}}} \underbrace{\overline{A}_{\frac{9}{2}}(\rho K)}_{\overline{A}_{\rho^{0} K^{0}}} \underbrace{\overline{A}_{\frac{9}{2}}(\rho K)}_{\overline{A}_{\rho^{0} K^{0}}}$$

 Situation in pK decays found to be more favorable.

0

- events gives:
 - $\Box \quad \Delta \phi = (58.3 \pm 32.7 \pm 4.6 \pm 8.1)^{\circ}$
 - $\Delta \phi = (176.6 \pm 28.8 \pm 4.6 \pm 8.1)^{\circ}$ (errors are stat, syst, model)
- Belle results from 657 million BB:

$$\Delta \phi = (-0.7 \pm \frac{24}{23} \pm 11 \pm 18)^{\circ}$$

□
$$\Delta \phi = (+14.6 \pm {}^{19}_{20} \pm 11 \pm 18)$$

(errors are stat, syst, model)

- Difference between solutions is interference between K₀*±(1430) and NR
- This phase difference includes the $B^0\overline{B}^0$ mixing phase (-2 β)

B.Aubert et al., Phys. Rev. D80, 112001

-50

-100

2∆log(

J.Dalseno et al., Phys. Rev. D79, 072004

100 150

50

) 0 Δφ(**Κ*(892)**π)

$K^{*+}\pi^{-}$ and $K^{*-}\pi^{+}$ phase difference

Issue 1 - Phase conventions

- Each quasi-two body subsystem of Kππ in the vector meson rest frame contains:
 - □ Two pseudoscalar decay products with momentum **q** and −**q**
 - The bachelor pseudoscalar with momentum p
- Choice of which resonance daughter is defined to have positive momentum defines the phase convention
- Alternative choice induces a 180° flip of the phase
- Whichever choice is made it must be correctly accounted for when combining amplitudes to obtain the constraint on the UT apex
- See Gronau *et al.*, Phys.Rev.D**81**, 094026(2010)

Issue 2 - EWP contributions EWP $Te^{i\gamma}$ EWP Gronau et al., Phys.Rev.D75, 014002 $A_{\frac{3}{2}} \propto \left(\overline{\rho} + i\overline{\eta}\right) \left(1 + \frac{r_3}{\frac{3}{2}}\right)$ SU(3) decomposition of operators Wilson coeff, $\lambda \approx -0.27$ gives good approximation: Ratio of hadronic $A_{\rho^{+}\pi^{0}} - A_{\rho^{0}\pi^{+}}$ $K^+ \overline{K}^{*0}$ matrix elements r_3 $_{^{+}\pi^{0}} + A$ A $\overline{2}$

Estimating $r_{3/2}$

Decay Mode	BF(x10 ⁻⁶)	A _{CP}	[REs aro woll
$B^+ \rightarrow ho^0 \pi^+$	8.3 ^{+1.2} _{-1.3}	0.18 +0.09 -0.17		measured
$B^{*} ightarrow ho^{*} \pi^{0}$	10.9 ^{+1.4} _{-1.5}	0.02 ± 0.11 -		Amplitudes small
$B^+ \to K^+ \overline{K}^{*0}$	0.68 ± 0.19			but relative
$B^+ \to K_S K_S \pi^+$	< 0.51	-		phases unknown

Experimental numbers from HFAG Winter 2010, www.slac.stanford.edu/xorg/hfag/

Strategy – Separate into well-measured components and systematic uncertainty K^*K Systematic $\frac{m_s}{m_s} \approx 30\%$

$$r_{\frac{3}{2}} = \frac{A_{\rho^{+}\pi^{0}} - A_{\rho^{0}\pi^{+}}}{A_{\rho^{+}\pi^{0}} + A_{\rho^{0}\pi^{+}}} \pm \sqrt{2} \frac{A_{K^{*+}\overline{K}^{*0}} - A_{K^{+}\overline{K}^{*0}}}{A_{\rho^{+}\pi^{0}} + A_{\rho^{0}\pi^{+}}} \pm \frac{\sqrt{2} \frac{A_{K^{*+}\overline{K}^{*0}} - A_{K^{+}\overline{K}^{*0}}}{A_{\rho^{+}\pi^{0}} + A_{\rho^{0}\pi^{+}}} \pm \frac{30\% SU(3)}{30\% SU(3)}$$

Measurement of $r_{3/2}$

Determining γ from $B \rightarrow \rho K$

- Another method involves using $B \rightarrow \rho K$ with $K^+ \pi^- \pi^0$ and $K_S \pi^+ \pi^-$
- Subtle difference with K^{*}π: relative phase not measured directly:
 - ρ^+K^- measured from $K^+\pi^-\pi^0$
 - $\rho^0 K_S$ measured from $K_S \pi^+ \pi^-$
- A_{3/2} determined from difference between the phases relative to K^{*+}π⁻

 EW penguin contributions follow again from ρπ like in K*(892)π case

Interference fractions

$$FF_{ij} = \frac{\int_{\rm DP} 2\,{\rm Re}\left[c_i c_j^* F_i(m_+^2, m_-^2) F_j^*(m_+^2, m_-^2)\right] d(m_+^2) d(m_-^2)}{\int_{\rm DP} \left|\sum_j c_j F_j(m_+^2, m_-^2)\right|^2 d(m_+^2) d(m_-^2)}$$

- Gives the extent of the interference effect between two resonances as measured in the fit.
- It's a convention independent representation of the event population of the DP
 - +FF_{ii} = constructive interference
 - $-FF_{ij}$ = destructive interference