

Recent BABAR studies of bottomonium, charmonium and charmonium-like states Elisa Guido **INFN** Genova (on behalf of **BABAR Collaboration**)

EPS-HEP 2011 – Grenoble, 22nd July 2011

Outline

- Recent <u>bottomonium</u> results:
 - ✓ Evidence for the $h_b(1P)$ in Y(3S)-> $\pi^0 h_b(1P)$
 - ✓ Search for the $h_b(1P)$ in Y(3S)-> $\pi^+\pi^-h_b(1P)$ and study of dipion transitions **arXiv:1105.4234**
 - Study of radiative bottomonium transitions using converted γ
- Recent <u>charmonium(-like)</u> results:
 - ✓ Evidence for the decay X(3872)->J/ $\psi\omega$
 - ✓ Observation of $\eta_c(1,2S)$ ->K⁺K⁻ $\pi^+\pi^-\pi^0$ in 2 γ interactions

PRD 84, 012004 (2011) [arXiv:1103.3971]

E. Guido, INFN Genova

arXiv:1102.4565

arXiv:1104.5254

PRD 82, 011101 (2010) [arXiv:1005.5190]

BABAR data samples

 $\Upsilon(nS)$ resonances PEP-II asymmetric energy e⁺e⁻-collider operating at \checkmark hadrons) (nb) 25 the Y resonances **Г=54KeV** $B\bar{B}$ threshold **CUSB BABAR** recorded luminosity \checkmark **Γ=32KeV** 15 \checkmark 425.6 fb⁻¹ of data at Y(4S) \rightarrow ~467.10⁶ BB pairs σ_{vis}=7nb **Г=20КеV** 10 σ_{vis}=4nb \checkmark 28.0 fb⁻¹ of data at Y(3S) \rightarrow \sim 122·10⁶ Y(3S) **Γ=20MeV** $q(e^+e^-)$ r(4S) (2S)1(35 \checkmark 13.6 fb⁻¹ of data at Y(2S) $\rightarrow \sim 99.10^{6}$ Y(2S) 9,46 10.00 10.02 10.34 10.37 10.54 10.58 10.62 9.44 Mass (GeV/c²) \checkmark 3.9 fb⁻¹ scan above Y(4S)

Bottomonium Physics

EPS-HEP2011, Grenoble 11/07/22

Search for h_b(1P) in Y(3S) decays

 $Y(3S) -> \pi^0 h_b(1P)$

✓ $h_b(1P)$ ->γ $η_b(1S)$: events with a $π^0$ and a photon consistent with this decay (energy range well defined by the precision measurement of the $η_b$ mass)

✓ Signal extraction:

• consider the recoil mass distribution against the π^0

✓ Fit to $m_{recoil}(\pi^0)$ distribution on data:

arXiv:1102.4565 ×10³ Entries / 3 MeV/c² 00 DATA ✓ After bkg subtraction: **9145 ± 2804 events** 170 × 10 $m(h_b)=9902 \pm 4_{(stat)} \pm 1_{(syst)} MeV/c^2$ h_b region fit result 165 B(Y(3S)-> $\pi^{0}h_{b}$)×B(h_{b} -> $\gamma\eta_{b}$)=(3.7±1.1±0.7)×10⁻⁴ zoom bkg Previous UL: B(Y(3S)-> $\pi^{0}h_{b}$)<2.7×10⁻³ **PRD 49,40(1994)** 160 Entries/ 6 MeV/c² 000 000 000 000 155 BABAR bkg-sub 50 BABAR preliminary 150 preliminary DATA 9.96 9.98 9.92 9.94 9.86 9.88 9.9 9.84 0 9.8 9.75 9.85 9.9 9.95 10 $m_{recoil}(\pi^0)$ (GeV/c²) -1000 ✓ Statistical significance 3.2σ -> **3.0σ** when including systematic uncertainties -2000 9.75 9.8 9.85 9.9 9.95 10 $m_{recoil}(\pi^0)$ (GeV/c²) ✓ Main systematics from: bkg and signal descriptions

sub.PRD-RC

Search for $h_b(1P)$ in Y(3S)-> $\pi^+\pi^-X$

accepted PRD-RC arXiv:1105.4234

✓ Fit to the recoil mass against the dipion system:

$$m_R = \sqrt{(m(\Upsilon(3S)) - E^*(\pi^+\pi^-))^2 - p^*(\pi^+\pi^-)^2}$$

✓ h_b signal expected as a peak on top of a smooth non-peaking bkg (continuum events, and $K_S^0 \rightarrow \pi^+\pi^-$) and bottomonium decays

accepted PRD-RC arXiv:1105.4234

✓ After non-peaking bkg subtraction:

✓ No evidence for h_b -> 90% CL UL on the branching fraction B(Y(3S)-> $\pi^+\pi^-h_b(1P)$)<1.2×10⁻⁴

Previous UL: B(Y(3S)-> $\pi^{+}\pi^{-}h_{b}$)<1.8×10⁻³

PRD 43,1448(1991)

Precision measurements of dipion transitions

- B(Y(3S)-> $\pi^{+}\pi^{-}$ Y(2S)) = (3.00 ± 0.02_(stat) ± 0.14_(syst))%
- B(Y(3S)->XY(2S))×B(Y(2S)-> $\pi^{+}\pi^{-}Y(1S)$)=(1.16 ± 0.07_(stat) ± 0.12_(syst))×10⁻⁴
- M(Y(3S))-M(Y(2S)) = 331.50 ± 0.02 (stat) ± 0.13 (syst) MeV/c²

✓ In particular for the first time the dipion transitions between $\chi_{b1,2}(2P)$ and $\chi_{b1,2}(1P)$ separated

- B(Y(3S)->X $\chi_{b1}(2P)$)×B($\chi_{b1}(2P)$ -> $\pi^{+}\pi^{-}\chi_{b1}(1P)$)=(1.16 ± 0.07_(stat) ± 0.12_(syst))×10⁻⁴
- B(Y(3S)->X $\chi_{b2}(2P)$)×B($\chi_{b2}(2P)$ -> $\pi^{+}\pi^{-}\chi_{b2}(1P)$)=(0.64 ± 0.05_(stat) ± 0.08_(syst))×10⁻³

accepted PRD-RC

arXiv:1105.4234

Radiative transitions with converted y

 ✓ Radiative transitions between bottomonia well described by <u>effective potential models</u> (nonrelativistic limit)

✓ Cases of suppressed E1 [i.e. Y(3S)->γχ_b(1P)] and "hindered" M1 [i.e. Y(3,2S)->γη_b(1S)] dipole transitions

 ✓ Doppler broadening and detector resolution may lead to unresolved photon energies for different transitions
 -> aim: separate the individual contributions

✓ allows a greatly improved resolution (25->5 MeV)

✓ decreases efficiencies (ranging in 0.1-2.5%)

 E_{γ}^{*} = photon energy calculated in the CM frame

E_{γ}^{*} spectrum regions

sub. PRD arXiv:1104.5254

✓ Converted photons are reconstructed as pairs of tracks, selected with:

✓ a χ² fit identifying secondary vertices;

✓ cuts on m(e⁺e⁻), ρ_{γ} , |cos θ_{thrust} |, N_{tracks}, π⁰-veto

✓ Fit to the E^{*}_γ spectrum in 4 different regions:

- 1. Y(3S): 180 < E^{*}_γ < 300 MeV
- 2. Y(3S): 300 < E^{*}_γ < 600 MeV
- 3. Y(3S): $600 < E_{\gamma}^* < 1100 \text{ MeV}$
- 4. Y(2S): 300 < E^{*}_γ < 800 MeV

1. Y(3S): 180<E^{*}_γ<300 MeV

sub. PRD arXiv:1104.5254

✓ Transitions of interest: $\chi_{bJ}(2P) -> \gamma Y(2S)$ (and potentially sensitive to $Y(1D_J) -> \gamma \chi_{bJ}(2P)$)

✓ Most precise measurement of $B(\chi_{b1,2}(2P) -> \gamma Y(2S))$

13

2. Y(3S): 300<E^{*}_γ<600 MeV

✓ Complicated region of the spectrum!

✓ Transitions of interest: Y(3S)->γχ_b(1P) with overlapping Doppler-broadened paths to χ_b(1P) and feed-down from χ_b(1P)->γY(1S) and Y(3S)->γη_b(2S)

✓ Clear observations of $B(Y(3S) -> \gamma \chi_{b0,2}(1P))$

✓ No evidence for $\eta_{b}(2S)$

sub. PRD

arXiv:1104.5254

E.Guido, INFN Genova

14

3. Y(3S): 600<E^{*}_γ<1100 MeV

✓ Transitions of interest: χ_{bJ}(2P)->γY(1S) and Y(3S)->γη_b(1S)

sub. PRD arXiv:1104.5254

✓ Most precise measurements of $B(\chi_{b1,2}(2P) -> \gamma Y(1S))$

✓ Statistics insufficient for a conclusive $\eta_b(1S)$ study (2.7 σ significance w/ systematics)

4. Y(2S): $300 < E_{v}^{*} < 800 \text{ MeV}$

 \checkmark Transitions of interest: $\chi_{bJ}(1P) \rightarrow \gamma Y(1S)$ and $Y(2S) \rightarrow \gamma \gamma_b(1S)$

sub. PRD arXiv:1104.5254

✓ Most precise measurement of $B(\chi_{b1,2}(1P) - >\gamma Y(1S))$, no evidence for $\chi_{b0}(1P) - >\gamma Y(1S)$

✓ Statistics insufficient for a conclusive $\eta_b(1S)$ study (1.7 σ significance w/ systematics)

Comparison with predictions

✓ General good agreement in $B(\chi_{bJ}(1,2P)->\gamma Y(1,2S))$ between our results and predictions

Kwong & Rosner PRD 38,279 (1988)

,23]]		
	BABAR	
Decay	preliminary(%)	Theory $(\%)$
$\mathcal{B}(\chi_{b0}(2P) \to \gamma \Upsilon(2S))$	(< 2.9)	1.27
$\mathcal{B}(\chi_{b1}(2P) \to \gamma \Upsilon(2S))$	19.1 ± 2.3	20.2
$\mathcal{B}(\chi_{b2}(2P) \to \gamma \Upsilon(2S))$	8.2 ± 1.4	10.1
$\overline{\mathcal{B}(\chi_{b0}(2P) \to \gamma \Upsilon(1S))}$	(< 1.2)	0.96
$\mathcal{B}(\chi_{b1}(2P) \to \gamma \Upsilon(1S))$	9.9 ± 1.1	11.8
$\mathcal{B}(\chi_{b2}(2P) \to \gamma \Upsilon(1S))$	$7.1^{+1.0}_{-0.9}$	5.3
$\mathcal{B}(\chi_{b0}(1P) \to \gamma \Upsilon(1S))$	(< 4.6)	3.2
$\mathcal{B}(\chi_{b1}(1P) \to \gamma \Upsilon(1S))$	36.2 ± 2.8	46.1
$\mathcal{B}(\chi_{b2}(1P) \to \gamma \Upsilon(1S))$	$20.2^{+1.6}_{-1.8}$	22.2
		<i>y</i>

\checkmark Limited compatibility between our results and

theory about 3S->1P rates

Source	J = 0	J = 1	J=2
BABAR preliminary	55 ± 10	< 22	216 ± 25
Moxhay-Rosner	25	25	150
Grotch et al.	114	3.4	194
Daghighian-Silverman	16	100	650
Fulcher	10	20	30
Lähde	150	110	40
Ebert et al.	27	67	97

sub. PRD

arXiv:1104.5254

Charmonium(-like) States

EPS-HEP2011, Grenoble 11/07/22

Charmonium spectrum

- \checkmark Below the DD threshold established (and expected) states of charmonium spectrum and their measured decay properties in good agreement with theory
- ✓ <u>A plethora of unexpected states</u> above the DD threshold
- ✓ Genealogy started with X(3872) by Belle

PRL 91,262001 (2003)

✓ Dialogue with theory and experimental new discoveries not yet finished...

Evidence for X(3872)->J/ψω

PRD 82, 011101 (2010)

✓ X(3872) observed primarily in J/ ψ π⁺π⁻ **PRL**

PRL 91,262001 (2003) et al.

✓ Then, evidence for X(3872)->J/ $\psi\gamma$, establishing <u>positive C parity</u>

PRL 102, 132001 (2009)

 \checkmark Analyses of the $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ mass distribution and of the angular distribution

Observation of $\eta_c(1,2S)$ ->K⁺K⁻ $\pi^+\pi^-\pi^0$

✓ **η**_c(1,2S) are established states, but many decay properties still little **PRD 84, 012004 (2011)** explored (mainly for η_c(2S))

(and J>2 suppressed by decay phase space)

✓ Final states:

• γγ->K_s⁰K[±]π[∓]
• γγ->K⁺K[−]π⁺π[−]π⁰

with K_S⁰->π⁺π⁻and π⁰-> γγ

 \checkmark Background from combinatorial, other 2 γ collisions, and ISR processes

✓ Signal identified by number of charged tracks and additional reconstructed γ, p_T distribution, missing mass

✓ Binned ML fit to the invariant mass distributions of final state particles:

✓ Systematic uncertainties from fit procedure, peaking bkg, reconstruction and selection efficiencies

✓ Most precise mass and width measurements:

• $M(\eta_c(2S)) = 3638.5 \pm 1.5_{(stat)} \pm 0.8_{(syst)} \text{ MeV/c}^2$ • $\Gamma(\eta_c(2S)) = 13.4 \pm 4.6_{(stat)} \pm 3.2_{(syst)} \text{ MeV}$

In particular, first $\eta_c(2S)$ exclusive hadronic decay other than to $K\overline{K}\pi$

PRD 84, 012004 (2011)

Conclusions

- A summary of the most recent bottomonium and charmonium(-like) results: \checkmark
 - Evidence for the $h_b(1P)$ in Y(3S)-> $\pi^0 h_b(1P)$ ullet
 - Search for the $h_b(1P)$ in Y(3S)-> $\pi^+\pi^-h_b(1P)$ and precise study of dipion transitions
 - Precise measurements of a number of radiative transitions using converted γ ullet

Evidence for the decay X(3872)->J/ $\psi\omega$ (favoring J^P=2⁻)

Observation of $\eta_c(1,2S)$ ->K⁺K⁻ $\pi^+\pi^-\pi^0$ in 2 γ interactions

arXiv:1104.4254

arXiv:1105.4234

PRD 82, 011101 (2010)

PRD 84, 012004 (2011)

EPS-HEP2011, Grenoble 11/07/22

Many other results coming soon! \checkmark

BACKUP SLIDES

X(3872)->J/ $\psi\omega$: Dalitz plot weighting technique

